无机材料学报 ›› 2020, Vol. 35 ›› Issue (8): 916-922.DOI: 10.15541/jim20190641 CSTR: 32189.14.10.15541/jim20190641
所属专题: 能源材料论文精选(三):热电与燃料电池(2020); 【虚拟专辑】热电材料(2020~2021)
邱小小1(),周细应1(
),傅赟天2,孙晓萌2,王连军3(
),江莞2
收稿日期:
2019-12-18
修回日期:
2020-01-10
出版日期:
2020-08-20
网络出版日期:
2020-03-06
作者简介:
邱小小(1994–), 男, 硕士研究生. E-mail: 基金资助:
QIU Xiaoxiao1(),ZHOU Xiying1(
),FU Yuntian2,SUN Xiaomeng2,WANG Lianjun3(
),JIANG Wan2
Received:
2019-12-18
Revised:
2020-01-10
Published:
2020-08-20
Online:
2020-03-06
Supported by:
摘要:
在GeTe中掺杂In能够引入共振能级, 但其微观结构对热电性能的影响还不明确。本研究采用熔炼-淬火-退火并结合放电等离子体烧结(SPS)的方法制备了系列Ge1-xInxTe样品, 采用XRD、SEM、激光导热仪和热电性能分析系统(ZEM-3)对其微观结构和热电性能进行了研究。结果表明, 随着In元素的掺入, Ge1-xInxTe的晶胞体积减小、人字鱼骨结构变小、晶界增多, 导致晶格热导率降低, 获得的最低热导率为2.16 W·m -1·K -1。同时, 掺杂In引入了共振能级, 降低了载流子浓度, 使塞贝克系数以及功率因子增大。当In掺杂量x为0.03时, Ge1-xInxTe在600 K时获得最大ZT值1.15, 比GeTe提升了26.4%, 表明调整Ge1-xInxTe的微观结构可以有效提升热电性能。
中图分类号:
邱小小,周细应,傅赟天,孙晓萌,王连军,江莞. Ge1-xInxTe微观结构对热电性能的影响[J]. 无机材料学报, 2020, 35(8): 916-922.
QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties[J]. Journal of Inorganic Materials, 2020, 35(8): 916-922.
x | a/nm | b/nm | c/nm | V/nm3 |
---|---|---|---|---|
0 | 0.4165 | 0.4165 | 1.0667 | 0.160284 |
0.01 | 0.4167 | 0.4167 | 1.0656 | 0.160234 |
0.02 | 0.4170 | 0.4170 | 1.0639 | 0.160204 |
0.03 | 0.4173 | 0.4173 | 1.0627 | 0.160278 |
0.05 | 0.4175 | 0.4175 | 1.0604 | 0.160037 |
0.10 | 0.4192 | 0.4192 | 1.0449 | 0.159058 |
表1 Ge1-xInxTe晶格常数及晶胞体积
Table 1 Lattice parameters and volume of Ge1-xInxTe
x | a/nm | b/nm | c/nm | V/nm3 |
---|---|---|---|---|
0 | 0.4165 | 0.4165 | 1.0667 | 0.160284 |
0.01 | 0.4167 | 0.4167 | 1.0656 | 0.160234 |
0.02 | 0.4170 | 0.4170 | 1.0639 | 0.160204 |
0.03 | 0.4173 | 0.4173 | 1.0627 | 0.160278 |
0.05 | 0.4175 | 0.4175 | 1.0604 | 0.160037 |
0.10 | 0.4192 | 0.4192 | 1.0449 | 0.159058 |
图2 Ge1-xInxTe样品的X射线光电子能谱图
Fig. 2 XPS patterns of Ge1-xInxTe (a) Full scan spectrum; (b) Binding energy of Ge3d; (c) Binding energy of In3d; (d) Binding energy of Te3d
图3 Ge0.97In0.03Te的EDS分析结果
Fig. 3 EDS mapping of the elements in Ge0.97In0.03Te (a)Fractured surface of Ge0.97In0.03Te; (b-d) Corresponding compositional mapping
Element | Atomic number | Mass/ % | Normalized quality/% | Atom/ % | Abs. error/ % |
---|---|---|---|---|---|
Te | 52 | 64.25 | 64.28 | 50.38 | 1.89 |
Ge | 32 | 34.24 | 34.26 | 47.18 | 1.91 |
In | 49 | 1.43 | 1.46 | 1.27 | 0.07 |
表2 Ge0.97In0.03Te的元素信息表
Table 2 Information of different elements of Ge0.97In0.03Te
Element | Atomic number | Mass/ % | Normalized quality/% | Atom/ % | Abs. error/ % |
---|---|---|---|---|---|
Te | 52 | 64.25 | 64.28 | 50.38 | 1.89 |
Ge | 32 | 34.24 | 34.26 | 47.18 | 1.91 |
In | 49 | 1.43 | 1.46 | 1.27 | 0.07 |
Sample | ρ/(g·cm-3) | d/% | σ/(×104, S·m-1) | S/(μV·K-1) | nH/(×1020, cm-3) | mH/(cm2·V-1·s-1) | L0/(×10-8, V2·K-2) |
---|---|---|---|---|---|---|---|
x=0 | 6.176 | 99.27 | 74.92 | 38.4 | 16.32 | 35.31 | 2.22 |
x =0.005 | 6.168 | 99.00 | 54.75 | 49.7 | — | — | 2.15 |
x =0.010 | 6.184 | 99.16 | 49.75 | 54.5 | — | — | 2.13 |
x =0.015 | 6.193 | 99.20 | 37.72 | 64.3 | 13.05 | 25.44 | 2.07 |
x =0.020 | 6.185 | 98.95 | 30.61 | 66.8 | — | — | 2.05 |
x =0.025 | 6.170 | 98.59 | 26.80 | 77.9 | — | — | 2.01 |
x =0.030 | 6.183 | 98.75 | 22.49 | 86.0 | 10.55 | 22.54 | 1.98 |
x =0.050 | 6.162 | 97.86 | 11.47 | 125 | 9.818 | 12.40 | 1.84 |
x =0.100 | 6.240 | 97.48 | 1.02 | 267 | 4.083 | 5.521 | 1.60 |
表3 室温下Ge1-xInxTe的电学输运性能
Table 3 Electrical transport properties of Ge1-xInxTe at room temperature
Sample | ρ/(g·cm-3) | d/% | σ/(×104, S·m-1) | S/(μV·K-1) | nH/(×1020, cm-3) | mH/(cm2·V-1·s-1) | L0/(×10-8, V2·K-2) |
---|---|---|---|---|---|---|---|
x=0 | 6.176 | 99.27 | 74.92 | 38.4 | 16.32 | 35.31 | 2.22 |
x =0.005 | 6.168 | 99.00 | 54.75 | 49.7 | — | — | 2.15 |
x =0.010 | 6.184 | 99.16 | 49.75 | 54.5 | — | — | 2.13 |
x =0.015 | 6.193 | 99.20 | 37.72 | 64.3 | 13.05 | 25.44 | 2.07 |
x =0.020 | 6.185 | 98.95 | 30.61 | 66.8 | — | — | 2.05 |
x =0.025 | 6.170 | 98.59 | 26.80 | 77.9 | — | — | 2.01 |
x =0.030 | 6.183 | 98.75 | 22.49 | 86.0 | 10.55 | 22.54 | 1.98 |
x =0.050 | 6.162 | 97.86 | 11.47 | 125 | 9.818 | 12.40 | 1.84 |
x =0.100 | 6.240 | 97.48 | 1.02 | 267 | 4.083 | 5.521 | 1.60 |
图5 Ge1-xInxTe的热电性能
Fig. 5 Thermoelectric properties of Ge1-xInxTe (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) Figure of merit
[1] | MAO J, LIU Z, ZHOU J, et al. Advances in thermoelectrics. Advances in Physics, 2018,67(2):69-147. |
[2] |
ZHANG X, ZHAO L. Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics, 2015,1(2):92-105.
DOI URL |
[3] |
LU X, ZHENG Q, GU S, et al. Enhanced Te properties of Cu@Ag/Bi2Te3 nanocomposites by decoupling electrical and thermal properties. Chinese Chemical Letters, 2019. in press, doi: 10.1016/j.cclet.2019.07.034.
URL PMID |
[4] |
ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019,34(3):279-293.
DOI URL |
[5] |
ZHOU Z X, LI J L, FAN Y C, et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance. Scripta Materialia, 2019,162:166-171.
DOI URL |
[6] |
SAJID M, HASSAN I, RAHMAN A. An overview of cooling of thermoelectric devices. Renewable and Sustainable Energy Reviews, 2017,78:15-22.
DOI URL |
[7] |
LI W, PENG J, XIAO W, et al. The temperature distribution and electrical performance of fluid heat exchanger-based thermoelectric generator. Applied Thermal Engineering, 2017,118:742-747.
DOI URL |
[8] |
ZHU T J. Recent advances in thermoelectric materials and devices. Journal of Inorganic Materials, 2019,34(3):233-235.
DOI URL |
[9] |
HONG M, ZOU J, CHEN Z G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Advanced Materials, 2019,31(14):e1807071.
DOI URL PMID |
[10] |
TANG C M, LIANG D D, LI H Z, et al. Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites. Journal of Advanced Ceramics, 2019,8(2):209-217.
DOI URL |
[11] |
ZHANG X, LI J, WANG X, et al. Vacancy manipulation for thermoelectric enhancements in GeTe alloys. Journal of the American Chemical Society, 2018,140(46):15883-15888.
DOI URL PMID |
[12] |
OKAMOTO H. Ge-Te (germanium-tellurium). Journal of Phase Equilibria, 2000,21(5):496-496.
DOI URL |
[13] | DONG J F, SUN F H, TANG H C, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy & Environmental Science, 2019,12(4):1396-1403. |
[14] |
PERUMAL S, ROYCHOWDHURY S, NEGI D S, et al. High thermoelectric performance and enhanced mechanical stability of p-type Ge1-xSbxTe. Chemistry of Materials, 2015,27(20):7171-7178.
DOI URL |
[15] |
GELBSTEIN Y, DAVIDOW J, LESHEM E, et al. Significant lattice thermal conductivity reduction following phase separation of the highly efficient GexPb1-xTe thermoelectric alloys. Physica Status Solidi (b), 2014,251(7):1431-1437.
DOI URL |
[16] |
CHEN Z, ZHANG X, PEI Y. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2018,30(17):e1705617.
DOI URL PMID |
[17] |
HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008,321(5888):554-557.
DOI URL PMID |
[18] |
WU L H, LI X, WANG S Y, et al. Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Materials, 2017,9(1):e343.
DOI URL |
[19] |
SRINIVASAN B, GELLE A, HALET J F, et al. Detrimental effects of doping Al and Ba on the thermoelectric performance of GeTe. Materials (Basel), 2018,11(11):2237.
DOI URL |
[20] |
LEE H S, KIM B S, CHO C W, et al. Herringbone structure in GeTe-based thermoelectric materials. Acta Materialia, 2015,91:83-90.
DOI URL |
[21] |
ZHENG Z, SU X, DENG R, et al. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. Journal of the American Chemical Society, 2018,140(7):2673-2686.
DOI URL PMID |
[22] |
ZHOU Y M, ZHOU Y L, PANG Q T, et al. Different doping sites of Ag on Cu2SnSe3 and their thermoelectric property. Journal of Inorganic Materials, 2019,34(3):301-309.
DOI URL |
[23] |
KIM S, LEE H S. Effects of addition of Si and Sb on the microstructure and thermoelectric properties of GeTe. Metals and Materials International, 2018,25(2):528-538.
DOI URL |
[24] |
HONG M, WANG Y, LIU W, et al. Arrays of planar vacancies in superior thermoelectric Ge1-x-yCdxBiyTe with band convergence. Advanced Energy Materials, 2018,8(30):1801837.
DOI URL |
[25] |
DESOUZA L, ZAMIAN J, DAROCHAFILHO G, et al. Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method. Dyes and Pigments, 2009,81(3):187-192.
DOI URL |
[26] |
ALLRED A L. Electronegativity values from thermochemical data. Journal of Inorganic and Nuclear Chemistry, 1961,17(3):215-221.
DOI URL |
[27] |
SRINIVASAN B, GELLÉ A, GUCCI F, et al. Realizing a stable high thermoelectric ZT~2 over a broad temperature range in Ge1-x-yGaxSbyTe via band engineering and hybrid flash-SPS processing. Inorganic Chemistry Frontiers, 2019,6(1):63-73.
DOI URL |
[28] |
SRINIVASAN B, GAUTIER R, GUCCI F, et al. Impact of coinage metal insertion on the thermoelectric properties of GeTe solid- state solutions. The Journal of Physical Chemistry C, 2017,122(1):227-235.
DOI URL |
[29] |
YUE L, FANG T, ZHENG S, et al. Cu/Sb codoping for tuning carrier concentration and thermoelectric performance of GeTe-based alloys with ultralow lattice thermal conductivity. ACS Applied Energy Materials, 2019,2(4):2596-2603.
DOI URL |
[30] |
LI J, ZHANG X, CHEN Z, et al. Low-symmetry rhombohedral gete thermoelectrics. Joule, 2018,2(5):976-987.
DOI URL |
[31] |
ROYCHOWDHURY S, BISWAS K. Slight symmetry reduction in thermoelectrics. Chem., 2018,4(5):939-942.
DOI URL |
[32] |
WANG S, YANG J, TOLL T, et al. Conductivity-limiting bipolar thermal conductivity in semiconductors. Scientific Reports, 2015,5:10136.
DOI URL PMID |
[1] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
[2] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[3] | 金敏, 马玉鹏, 魏天然, 林思琪, 白旭东, 史迅, 刘学超. 非化学计量溶液区熔法生长大尺寸InSe晶体及表征[J]. 无机材料学报, 2024, 39(5): 554-560. |
[4] | 陈浩, 樊文浩, 安德成, 陈少平. 能带优化和载流子调控改善SnTe的热电性能[J]. 无机材料学报, 2024, 39(3): 306-312. |
[5] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[6] | 孟雨婷, 王雪梅, 章淑娴, 陈志炜, 裴艳中. Bi2Te3基热电材料的单带和双带传输特性转变[J]. 无机材料学报, 2024, 39(11): 1283-1291. |
[7] | 苏浩健, 周敏, 李来风. 多元素掺杂优化SnTe的热电性能[J]. 无机材料学报, 2024, 39(10): 1159-1166. |
[8] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. |
[9] | 王姝灵, 蒋蒙, 王连军, 江莞. 稳定立方相结构的n型无铅AgBiSe2基热电材料[J]. 无机材料学报, 2023, 38(7): 807-814. |
[10] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[11] | 李建波, 田震, 蒋全伟, 于砺锋, 康慧君, 曹志强, 王同敏. 不同元素掺杂对CaTiO3微观结构及热电性能的影响[J]. 无机材料学报, 2023, 38(12): 1396-1404. |
[12] | 付师, 杨增朝, 李江涛. 功率模块封装用高强度高热导率Si3N4陶瓷的研究进展[J]. 无机材料学报, 2023, 38(10): 1117-1132. |
[13] | 孙小凡, 陈小武, 靳喜海, 阚艳梅, 胡建宝, 董绍明. 低温反应熔渗工艺制备AlN-SiC复相陶瓷及其性能研究[J]. 无机材料学报, 2023, 38(10): 1223-1229. |
[14] | 付师, 杨增朝, 李宏华, 王良, 李江涛. 复合烧结助剂对Si3N4陶瓷力学性能和热导率的影响[J]. 无机材料学报, 2022, 37(9): 947-953. |
[15] | 胡佳军, 王凯, 侯鑫广, 杨婷, 夏鸿雁. 熔盐法合成高导热磷化硼及其热管理性能研究[J]. 无机材料学报, 2022, 37(9): 933-940. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||