无机材料学报 ›› 2020, Vol. 35 ›› Issue (12): 1373-1379.DOI: 10.15541/jim20200135 CSTR: 32189.14.10.15541/jim20200135
所属专题: 能源材料论文精选(三):热电与燃料电池(2020)
周星圆(),柳伟(),张程,华富强,张敏,苏贤礼,唐新峰()
收稿日期:
2020-03-16
修回日期:
2020-04-03
出版日期:
2020-12-20
网络出版日期:
2020-04-05
作者简介:
周星圆(1995–), 男, 硕士研究生. E-mail: zhouxingyuan@whut.edu.cn
基金资助:
ZHOU Xingyuan(),LIU Wei(),ZHANG Cheng,HUA Fuqiang,ZHANG Min,SU Xianli,TANG Xinfeng()
Received:
2020-03-16
Revised:
2020-04-03
Published:
2020-12-20
Online:
2020-04-05
About author:
ZHOU Xingyuan(1995–), male, Master candidate. E-mail: zhouxingyuan@whut.edu.cn
Supported by:
摘要:
固溶结合掺杂是优化材料热电性能的有效途径。本研究采用固相反应结合等离子体活化烧结成功合成了一系列单相的Mo1-xWxSeTe(0≤x≤0.5)固溶体及其Nb掺杂产物。热电输运研究表明, W固溶结合Nb掺杂显著提高了Nb2yMo0.5-yW0.5-ySeTe固溶体的载流子浓度、载流子迁移率、电导率和功率因子, 适当降低了样品的晶格热导率, 进而显著提高了材料的热电优值ZT。随着Nb掺杂量的增加, 掺杂引入的离散能级转变为连续的杂质能带, 同步提升了载流子浓度和载流子迁移率。取向性研究发现, 由于在平行方向晶格热导率较低, Nb2yMo0.5-yW0.5-ySeTe固溶体在平行烧结压力方向的ZT略优。最优组分Nb0.03Mo0.485W0.485SeTe在垂直于烧结压力和平行于烧结压力方向获得了最高ZT, 分别达到0.31和0.36(@823 K), 是目前MoSe2基热电材料获得的最好结果之一。后续通过优化掺杂元素来改善Seebeck系数和功率因子, 将有望进一步提升MoSe2基化合物的ZT。
中图分类号:
周星圆, 柳伟, 张程, 华富强, 张敏, 苏贤礼, 唐新峰. Nb掺杂Mo1-xWxSeTe固溶体的热-电输运性能优化[J]. 无机材料学报, 2020, 35(12): 1373-1379.
ZHOU Xingyuan, LIU Wei, ZHANG Cheng, HUA Fuqiang, ZHANG Min, SU Xianli, TANG Xinfeng. Optimization of Thermoelectric Transport Properties of Nb-doped Mo1-xWxSeTe Solid Solutions[J]. Journal of Inorganic Materials, 2020, 35(12): 1373-1379.
图S2 Mo1-xWxSeTe不同方向的断面SEM形貌
Fig. S2 SEM fractured surface morphologies of Mo1-xWxSeTe (a) x = 0, ⊥P; (b) x = 0, //P; (c) x = 0.25, ⊥P; (d) x = 0.25, //P; (e) x = 0.5, ⊥P; (f) x = 0.5, //P
图S3 Mo1-xWxSeTe 固溶体(0≤x≤0.5)沿⊥P和//P方向的(a, d)电导率σ, (b, e)塞贝克系数S和(c, f)热导率κ随温度变化的关系曲线
Fig. S3 Temperature dependence of (a, d) electrical conductivity σ, (b, e) Seebeck coefficient S, and (c, f) thermal conductivity κ of Mo1-xWxSeTe solid solutions (0≤x≤0.5) measured along the ⊥P and //P directions
Sample | Actual composition | Lattice parameters/nm | Eg/eV |
---|---|---|---|
x=0 | MoSe1.02Te1.04 | a=0.35, c=1.367 | 1.030 |
x=0.25 | Mo0.74W0.25Se0.9Te0.96 | a=0.3512, c=1.375 | 1.005 |
x=0.5 | Mo0.54W0.46Se0.93Te0.94 | a=0.3.5, c=1.371 | 0.998 |
表S1 1 Mo1-xWxSeTe(0≤x≤0.5)固溶体的组成、晶胞参数与光学带隙
Table S1 1 Compositions, cell parameters and optical band gaps of Mo1-xWxSeTe (0≤x≤0.5) solid solutions
Sample | Actual composition | Lattice parameters/nm | Eg/eV |
---|---|---|---|
x=0 | MoSe1.02Te1.04 | a=0.35, c=1.367 | 1.030 |
x=0.25 | Mo0.74W0.25Se0.9Te0.96 | a=0.3512, c=1.375 | 1.005 |
x=0.5 | Mo0.54W0.46Se0.93Te0.94 | a=0.3.5, c=1.371 | 0.998 |
Sample | P0 | P⊥ | LF |
---|---|---|---|
x=0 | 0.31 | 0.71 | 0.58 |
x=0.25 | 0.30 | 0.54 | 0.34 |
x=0.5 | 0.29 | 0.45 | 0.23 |
表S2 2 Mo1-xWxSeTe(0≤x≤0.5)固溶体的取向因子LF
Table S2 2 LF factors of Mo1-xWxSeTe (0≤x≤0.5) solid solutions
Sample | P0 | P⊥ | LF |
---|---|---|---|
x=0 | 0.31 | 0.71 | 0.58 |
x=0.25 | 0.30 | 0.54 | 0.34 |
x=0.5 | 0.29 | 0.45 | 0.23 |
Sample | Actual composition | Lattice parameters/nm |
---|---|---|
Mo0.5W0.5SeTe | Mo0.54W0.46Se0.93Te0.94 | a=0.350, c=1.371 |
Nb0.01Mo0.495W0.495SeTe | Mo0.53W0.47Se0.99Te1.09 | a=0.351, c=1.371 |
Nb0.03Mo0.485W0.485SeTe | Nb0.03Mo0.51W0.46Se0.93Te0.96 | a=0.351, c=1.370 |
Nb0.05Mo0.475W0.475SeTe | Nb0.04Mo0.44W0.52Se0.97Te0.95 | a=0.352, c=1.371 |
Nb0.07Mo0.465W0.465SeTe | Nb0.05Mo0.51W0.43Se0.90Te0.86 | a=0.352, c=1.371 |
表S3 3 Nb2yMo0.5-yW0.5-ySeTe(0≤y≤0.035)固溶体的组成与晶胞参数
Table S3 3 Compositions and cell parameters of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions
Sample | Actual composition | Lattice parameters/nm |
---|---|---|
Mo0.5W0.5SeTe | Mo0.54W0.46Se0.93Te0.94 | a=0.350, c=1.371 |
Nb0.01Mo0.495W0.495SeTe | Mo0.53W0.47Se0.99Te1.09 | a=0.351, c=1.371 |
Nb0.03Mo0.485W0.485SeTe | Nb0.03Mo0.51W0.46Se0.93Te0.96 | a=0.351, c=1.370 |
Nb0.05Mo0.475W0.475SeTe | Nb0.04Mo0.44W0.52Se0.97Te0.95 | a=0.352, c=1.371 |
Nb0.07Mo0.465W0.465SeTe | Nb0.05Mo0.51W0.43Se0.90Te0.86 | a=0.352, c=1.371 |
图S4 Nb2yMo0.5-yW0.5-ySeTe(0≤y≤0.035)固溶体沿//P方向的(a)电导率σ, (b)塞贝克系数S, (c)功率因子PF, (d)热导率κ, (e)晶格热导率κL和(f)ZT值随温度变化的关系曲线
Fig. S4 Temperature dependence of (a) electrical conductivity σ, (b) Seebeck coefficient S, (c) power factor PF, (d) thermal conductivity κ, (e) lattice thermal conductivity κL and (f) the ZT values of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions measured along the //P direction
Sample | Actual composition | p/(×1020, cm-3) | μ/(cm2·V-1·s-1) | σ/(×104, S·m-1) | S/(μV·K-1) | |||
---|---|---|---|---|---|---|---|---|
⊥P | //P | ⊥P | //P | ⊥P | //P | |||
y=0 | Mo0.54W0.46Se0.93Te0.94 | 0.16 | 0.79 | 0.26 | 0.02 | 0.01 | 22.4 | 42.0 |
y=0.005 | Mo0.53W0.47Se0.99Te1.09 | 1.53 | 1.37 | 1.32 | 0.33 | 0.32 | 17.2 | 15.1 |
y=0.015 | Nb0.03Mo0.51W0.46Se0.93Te0.96 | 5.96 | 2.95 | 2.52 | 2.82 | 2.40 | 102 | 93.1 |
y=0.025 | Nb0.04Mo0.44W0.52Se0.97Te0.95 | 6.61 | 5.45 | 4.80 | 5.76 | 5.07 | 65.9 | 70.9 |
y=0.035 | Nb0.05Mo0.51W0.43Se0.90Te0.86 | 7.63 | 5.72 | 4.29 | 6.98 | 5.24 | 53.2 | 52.0 |
表1 Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035)固溶体的组成和室温热电输运性质
Table 1 Compositions and transport parameters of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions at room temperature
Sample | Actual composition | p/(×1020, cm-3) | μ/(cm2·V-1·s-1) | σ/(×104, S·m-1) | S/(μV·K-1) | |||
---|---|---|---|---|---|---|---|---|
⊥P | //P | ⊥P | //P | ⊥P | //P | |||
y=0 | Mo0.54W0.46Se0.93Te0.94 | 0.16 | 0.79 | 0.26 | 0.02 | 0.01 | 22.4 | 42.0 |
y=0.005 | Mo0.53W0.47Se0.99Te1.09 | 1.53 | 1.37 | 1.32 | 0.33 | 0.32 | 17.2 | 15.1 |
y=0.015 | Nb0.03Mo0.51W0.46Se0.93Te0.96 | 5.96 | 2.95 | 2.52 | 2.82 | 2.40 | 102 | 93.1 |
y=0.025 | Nb0.04Mo0.44W0.52Se0.97Te0.95 | 6.61 | 5.45 | 4.80 | 5.76 | 5.07 | 65.9 | 70.9 |
y=0.035 | Nb0.05Mo0.51W0.43Se0.90Te0.86 | 7.63 | 5.72 | 4.29 | 6.98 | 5.24 | 53.2 | 52.0 |
图4 Nb2yMo0.5-yW0.5-ySeTe(0≤y≤0.035)固溶体的(a)电导率s, (b)塞贝克系数S和(c)功率因子PF随温度的变化关系曲线, (a)中插图为Nb掺杂后引入的杂质能级示意图。
Fig. 4 Temperature dependence of (a) electrical conductivity s, (b) Seebeck coefficient S and (c) power factor PF of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions with inset in (a) showing the impurity states introduced by the Nb doping.
图5 Nb2yMo0.5-yW0.5-ySeTe(0≤y≤0.035)与文献报道的其它化合物的Pisarenko曲线对比
Fig. 5 Pisarenko plots for Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) samples compared with the reported data
图6 Nb2yMo0.5-yW0.5-ySeTe(0≤y≤0.035)固溶体的(a)热导率κ, (b)晶格热导率κL和(c)ZT值随温度变化关系曲线
Fig. 6 Temperature dependent (a) thermal conductivity κ, (b) lattice thermal conductivity κL and (c) figure of merit ZT for Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions
图S5 Nb2yMo0.5-yW0.5-ySeTe(y=0.015和0.025)固溶体和文献报道的Nb0.05Mo0.95SeTe和Ta0.05Mo0.95Se2沿⊥p和//P方向的热电性能比较
Fig. S5 Comparison of thermoelectric properties along ⊥p and //P directions among Nb2yMo0.5-yW0.5-ySeTe solid solutions with y=0.015 and 0.025 as well as Nb0.05Mo0.95SeTe and Ta0.05Mo0.95Se2 in the previous reports (a) Electrical conductivity s; (b) Seebeck coefficient S; (c) Power factor PF; (d) Thermal conductivity κ; (e) Lattice thermal conductivity κL; (f) ZT
[1] | ROWE D M. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995. |
[2] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008,321(5895):1457-1461.
DOI URL PMID |
[3] |
ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019,34(3):279-293.
DOI URL |
[4] | CHEN L D, XIONG Z, BAI S Q. Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials, 2010,25(6):3-10. |
[5] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008,7(2):105-114.
DOI URL PMID |
[6] |
BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489(7416):414-418.
DOI URL PMID |
[7] |
TAN G J, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016,116(19):12123-12149.
URL PMID |
[8] |
SU X, WEI P, LI H, et al. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Advanced Materials, 2017,29(20):1602013.
DOI URL |
[9] |
POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008,320(5876):634-638.
DOI URL PMID |
[10] |
PEI Y Z, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011,473(7345):66-69.
DOI URL PMID |
[11] |
LI H, SU X L, TANG X F, et al. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics. Journal of Materiomics, 2017,3(4):273-279.
DOI URL |
[12] |
LIU W, TAN X J, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Physical Review Letters, 2012,108(16):166601.
DOI URL PMID |
[13] |
HE W K, WANG D Y, WU H J, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science, 2019,365(6460):1418-1424.
DOI URL PMID |
[14] | FU C G, BAI S Q, LIU Y T, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nature Communications, 2015,6(1):1-7. |
[15] |
SHI X, SUN C, BU Z, et al. Revelation of inherently high mobility enables Mg3Sb2 as a sustainable alternative to n-Bi2Te3 thermoelectrics. Advanced Science, 2019,6(16):1802286.
DOI URL PMID |
[16] |
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012,7(11):699.
DOI URL |
[17] |
WICKRAMARATNE D, ZAHID F, LAKE R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. The Journal of Chemical Physics, 2014,140(12):124710.
DOI URL PMID |
[18] |
HUANG Z, WU T, KONG S, et al. Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping. Journal of Materials Chemistry A, 2016,4(26):10159-10165.
DOI URL |
[19] |
KONG S, WU T, YUAN M, et al. Dramatically enhanced thermoelectric performance of MoS2 by introducing MoO2 nanoinclusions. Journal of Materials Chemistry A, 2017,5(5):2004-2011.
DOI URL |
[20] |
KONG S, WU T, ZHUANG W, et al. Realizing p-type MoS2 with enhanced thermoelectric performance by embedding VMo2S4 nanoinclusions. The Journal of Physical Chemistry B, 2018,122(2):713-720.
DOI URL PMID |
[21] |
RUAN L, ZHAO H, LI D, et al. Enhancement of thermoelectric properties of molybdenum diselenide through combined Mg intercalation and Nb doping. Journal of Electronic Materials, 2016,45(6):2926-2934.
DOI URL |
[22] |
ZHANG C, LI Z, ZHANG M, et al. Synergistically improved electronic and thermal transport properties in Nb-doped NbyMo1-ySe2-2xTe2x solid solutions due to alloy phonon scattering and increased valley degeneracy. ACS Applied Materials & Interfaces, 2019,11(29):26069-26081.
DOI URL PMID |
[23] |
ZHANG C, LI Z, ZHANG M, et al. Impurity states in Mo1-xMxSe2 compounds doped with group VB elements and their electronic and thermal transport properties. Journal of Materials Chemistry C, 2020,8(2):619-629.
DOI URL |
[24] | MOTT N F, DAVIS E A, WEISER K. Electronic processes in non- crystalline materials. Physics Today, 1972,25:55. |
[1] | 王姝灵, 蒋蒙, 王连军, 江莞. 稳定立方相结构的n型无铅AgBiSe2基热电材料[J]. 无机材料学报, 2023, 38(7): 807-814. |
[2] | 王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723. |
[3] | 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋. Ge掺杂MnTe材料的热电输运性能[J]. 无机材料学报, 2022, 37(2): 209-214. |
[4] | 檀小芳, 端思晨, 王泓翔, 吴庆松, 李苗苗, 刘国强, 徐静涛, 谈小建, 邵和助, 蒋俊. 多掺杂协同调控碲化锡热导率和功率因子提升热电性能[J]. 无机材料学报, 2019, 34(3): 335-340. |
[5] | 沈家骏, 方腾, 傅铁铮, 忻佳展, 赵新兵, 朱铁军. 热电材料中的晶格热导率[J]. 无机材料学报, 2019, 34(3): 260-268. |
[6] | 沈俊杰, 朱铁军, 蔚 翠, 杨胜辉, 赵新兵. Ag2Te掺杂对p型Bi0.5Sb1.5Te3块状合金热电性能的影响[J]. 无机材料学报, 2010, 25(6): 583-587. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||