[1] |
POELMAN D, VAN DER HEGGEN D, DU J, et al. Persistent phosphors for the future: fit for the right application. Journal of Applied Physics, 2020, 128(24): 240903.
|
[2] |
XU J, TANABE S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. Journal of Luminescence, 2019, 205: 581.
|
[3] |
LI Y, GECEVICIUSA M, QIU J R. Long persistent phosphors- from fundamentals to applications. Chemical Society Reviews, 2016, 45(8): 2090.
|
[4] |
MATSUZAWA T, AOKI Y, TAKEUCHI N, et al. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. Journal of the Electrochemical Society, 2019, 143(8): 2670.
|
[5] |
CHERNOV V, SALAS-CASTILLO P, DÍAZ-TORRES L A, et al. Thermoluminescence and infrared stimulated luminescence in long persistent monoclinic SrAl2O4:Eu2+,Dy3+ and SrAl2O4:Eu2+,Nd3+ phosphors. Optical Materials, 2019, 92: 46.
|
[6] |
SMET P F, BOTTERMAN J, VAN DEN EECKHOUT K, et al. Persistent luminescence in nitride and oxynitride phosphors: a review. Optical Materials, 2014, 36(11): 1913.
|
[7] |
XUE H L, YANG M P, SUN J J, et al. Study on the flux for SrAl2O4:Eu2+, Dy3+ phosphor preparation used in fluorescent fiber. Ceramics International, 2024, 50(1): 1137.
|
[8] |
HÖLSÄ J. Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Journal of the Electrochemical Society, 2009, 18(4): 42.
|
[9] |
ZENG Q Q, WU Y Z, CHENG H Y, et al. Calcium doped self- activated zinc germanate long afterglow materials: multicolor afterglow and application in dynamic anti-counterfeiting. Journal of Inorganic Materials, 2023, 38(8): 901.
|
[10] |
CAI Y Y, LIU S B, ZHAO L, et al. Delayed stress memory by CaAl2O4:Eu2+ mechanoluminescent phosphor with defect engineering regulation. Journal of Advanced Ceramics, 2022, 11(8): 1319.
|
[11] |
ZHOU S H, LOU B B, MA C G, et al. First-principles study on persistent luminescence mechanism of LiYGeO4:Eu3+. Journal of Rare Earths, 2023, 41(10): 1519.
|
[12] |
LI Q L, LI N X, LI Y C, et al. Research progress of radio- photoluminescence materials and their applications. Journal of Inorganic Materials, 2023, 38(7): 731.
|
[13] |
ZHAO J T, LEI L, YE R G, et al. Sunlight activated ultra-stable long persistent luminescence glass ceramic for outdoor information display. Journal of Advanced Ceramics, 2022, 11(6): 974.
|
[14] |
VAN DEN EECKHOUT K, POELMAN D, SMET P F. Persistent luminescence in non-Eu2+-doped compounds: a review. Materials, 2013, 6(7): 2789.
|
[15] |
ZHENG H R, LIU L, LI Y A, et al. X-ray excited Mn2+-doped persistent luminescence materials with biological window emission for in vivo bioimaging. Journal of Rare Earths, 2024, 42(1): 28.
|
[16] |
YIN X G, ZHONG H Y, LIU L, et al. X-ray-activated Bi3+/Pr3+ co-doped LiYGeO4 phosphor with UV and NIR dual-emissive persistent luminescence. Journal of Rare Earths, 2024, 42(5): 955.
|
[17] |
DONG S M, WANG J Y, NI D W. Structural ceramics-the cornerstone of human civilization. Journal of Inorganic Materials, 2024, 39(6): 569.
|
[18] |
ZHUANG Y X, KATAYAMA Y, UEDA J, et al. A brief review on red to near-infrared persistent luminescence in transition-metal- activated phosphors. Optical Materials, 2014, 36(11): 1907.
|
[19] |
KADENGE V, KIPROTICH S, KAWIRA M, et al. Effect of Dy3+ concentrationson the structural and optical properties of SrAl2O4:Eu2+,Dy3+ NPs. Trends in Sciences, 2024, 21: 1.
|
[20] |
YANG L, GAI S L, DING H, et al. Recent progress in inorganic afterglow materials: mechanisms, persistent luminescent properties, modulating methods, and bioimaging applications. Advanced Optical Materials, 2023, 11(11): 2202382.
|
[21] |
LIANG L L, CHEN J Y, SHAO K, et al. Controlling persistent luminescence in nanocrystalline phosphors. Nature Materials, 2023, 22: 289.
|
[22] |
ZHUANG Y X, UEDA J, TANABE S. Photochromism and white long-lasting persistent luminescence in Bi3+-doped ZnGa2O4 ceramics. Optical Materials Express, 2012, 2(10): 1378.
|
[23] |
ZHUANG Y X, UEDA J, TANABE S. Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping. Applied Physics Express, 2013, 6(5): 052602.
|
[24] |
DAI Z F, MAO X Y, LIU Q, et al. Effect of dopant concentration on the optical characteristics of Cr3+:ZnGa2O4 transparent ceramics exhibiting persistent luminescence. Optical Materials, 2022, 125: 112127.
|
[25] |
DAI Z F, BOIKO V, GRZESZKIEWICZ K, et al. Effect of annealing treatment on the persistent luminescence of Y3Al2Ga3O12:Ce3+, Cr3+,Pr3+ ceramics. Optical Materials, 2020, 105: 109888.
|
[26] |
LIU Q, WANG W L, DAI Z F, et al. Fabrication and long persistent luminescence of Ce3+-Cr3+ co-doped yttrium aluminum gallium garnet transparent ceramics. Journal of Rare Earths, 2022, 40(11): 1699.
|
[27] |
YANG Y M, LI Z Y, ZHANG J Y, et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions. Light: Science & Applications, 2018, 7: 88.
|
[28] |
LI T S, LIU Q, ZHU D Y, et al. Fabrication and characterizations of Eu2+-Dy3+ co-doped SrAl2O4 ceramics with persistent luminescence. Journal of the American Ceramic Society, 2023, 106(10): 5877.
|
[29] |
UEDA J, DORENBOS P, BOS A J J, et al. Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering. Journal of Materials Chemistry C, 2015, 3(22): 5642.
|
[30] |
XU J, MURATA D, UEDA J, et al. Toward rechargeable persistent luminescence for the first and third biological windows via persistent energy transfer and electron trap redistribution. Inorganic chemistry, 2018, 57(9): 5194.
|
[31] |
DAI Z F, BOIKO V, GRZESZKIEWICZ K, et al. Effect of annealing temperature on persistent luminescence of Y3Al2Ga3O12:Cr3+ co-doped with Ce3+ and Pr3+. Optical Materials, 2021, 111: 110522.
|
[32] |
DAI Z, BOIKO V, MARKOWSKA M, et al. Optical studies of Y3(Al,Ga)5O12:Ce3+,Cr3+,Nd3+ nano-phosphors obtained by the Pechini method. Journal of Rare Earths, 2019, 37(11): 1132.
|
[33] |
XIA Z G, MEIJERINK A. Ce3+-doped garnet phosphors: composition modification, luminescence properties and applications. Chemical Society Reviews, 2017, 46(1): 275.
|
[34] |
WEI Z Y, MENG G H, CHEN L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings. Journal of Advanced Ceramics, 2022, 11(7): 985.
|
[35] |
UEDA J, KUROISHI K, TANABE S. Yellow persistent luminescence in Ce3+-Cr3+-codoped gadolinium aluminum gallium garnet transparent ceramics after blue-light excitation. Applied Physics Express, 2014, 7(6): 062201.
|
[36] |
MÉVEL C, CARREAUD J, DELAIZIR G, et al. First ZnGa2O4 transparent ceramics. Journal of the European Ceramic Society, 2021, 41(9): 4934.
|
[37] |
KARACAOGLU E, ÖZTÜRK E, UYANER M, et al. Atomic layer deposition (ALD) of nanoscale coatings on SrAl2O4-based phosphor powders to prevent aqueous degradation. Journal of the American Ceramic Society, 2020, 103(6): 3706.
|
[38] |
XU J, UEDA J, TANABE S. Novel persistent phosphors of lanthanide-chromium co-doped yttrium aluminum gallium garnet: design concept with vacuum referred binding energy diagram. Journal of Materials Chemistry C, 2016, 4(20): 4380.
|
[39] |
BOIKO V, DAI Z F, MARKOWSKA M, et al. Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system. Scientific Reports, 2021, 11: 141.
|
[40] |
KATAYAMA Y, VIANA B, GOURIER D, et al. Photostimulation induced persistent luminescence in Y3Al2Ga3O12:Cr3+. Optical Materials Express, 2016, 6(4): 1405.
|
[41] |
BOIKO V, ZELER J, MARKOWSKA M, et al. Persistent luminescence from Y3Al2Ga3O12 doped with Ce3+ and Cr3+ after X-ray and blue light irradiation. Journal of Rare Earths, 2019, 37(11): 1200.
|
[42] |
XU J, UEDA J, KUROISHI K, et al. Fabrication of Ce3+-Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence. Scripta Materialia, 2015, 102: 47.
|
[43] |
CHEN R, LAWLESS J L, PAGONIS V. A model for explaining the concentration quenching of thermoluminescence. Radiation Measurements, 2011, 46(12): 1380.
|
[44] |
CHEN B, WANG F. Combating concentration quenching in upconversion nanoparticles. Accounts of Chemical Research, 2020, 53(2): 358.
DOI
PMID
|
[45] |
WANG Z J, MEIJERINK A. Concentration quenching in upconversion nanocrystals. Journal of Physical Chemistry C, 2018, 122(45): 26298.
DOI
PMID
|
[46] |
PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nature Materials, 2011, 11: 58.
|