无机材料学报 ›› 2025, Vol. 40 ›› Issue (9): 1022-1028.DOI: 10.15541/jim20250022

• 研究论文 • 上一篇    下一篇

Cu-Mn-I固溶体薄膜制备及其p型透明导电性质调控

王亮君1(), 欧阳玉昭1, 赵俊亮2, 杨长1()   

  1. 1.华东师范大学 电子科学系, 极化材料与器件教育部重点实验室, 上海类脑智能材料与器件研究中心, 上海 200241
    2.上海半人马企业发展集团有限公司, 上海 201306
  • 收稿日期:2025-01-15 修回日期:2025-02-13 出版日期:2025-09-20 网络出版日期:2025-03-19
  • 通讯作者: 杨长, 教授. E-mail: cyang@phy.ecnu.edu.cn
  • 作者简介:王亮君(1998-), 男, 博士研究生. E-mail: 1134420548@qq.com
  • 基金资助:
    国家自然科学基金(62074056);国家自然科学基金(62474066);中央高校基本科研业务费专项资金;上海市白玉兰人才计划浦江项目(2023PJD028)

Cu-Mn-I Solid Solution Thin Films: Preparation and Control of p-type Transparent Conductive Properties

WANG Liangjun1(), OUYANG Yuzhao1, ZHAO Junliang2, YANG Chang1()   

  1. 1. Shanghai Center of Brain-inspired Intelligent Materials and Devices, Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
    2. Shanghai Berma Enterprise Development Group Co., Ltd., Shanghai 201306, China
  • Received:2025-01-15 Revised:2025-02-13 Published:2025-09-20 Online:2025-03-19
  • Contact: YANG Chang, professor. E-mail: cyang@phy.ecnu.edu.cn
  • About author:WANG Liangjun (1998-), male, PhD candidate. E-mail: 1134420548@qq.com
  • Supported by:
    National Natural Science Foundation of China(62074056);National Natural Science Foundation of China(62474066);Fundamental Research Funds for the Central Universities;Shanghai Pujiang Programme(2023PJD028)

摘要:

在光电子器件领域, 具有可控电学参数的p型透明半导体材料具有重要的应用价值。但以CuI为代表的该类材料在制备工艺与掺杂调控方面仍存在显著技术瓶颈。本研究通过锰阳离子掺杂, 成功制备出具有可调电学特性的新型p型透明半导体材料, 为透明电子学发展提供了新思路。采用反应磁控溅射技术制备的Cu1-xMnxI固溶体薄膜展现出独特的性能优势。首先, 该材料可以在室温条件下制备, 并保持优异的可见光透明性。其次, 随着锰掺杂量(x)的增加, 薄膜晶粒尺寸逐渐减小, 并且出现明显的晶粒团聚现象。通过X射线光电子能谱分析, 揭示了薄膜中锰离子以Mn2+和Mn3+混合价态存在。电学性能表征显示, 薄膜电阻率可在0.017~2.5 Ω·cm区间实现两个数量级的可控调节, 同时空穴载流子浓度稳定维持在1018~1019 cm-3较高数量级。与传统n型半导体掺杂规律不同, 引入高价态锰离子未显著影响材料的p型导电特性, 这可能源于锰取代亚铜离子后形成的非完全离域电子态。本研究表明CuI半导体的空穴导电特性不易受高价锰离子掺杂的影响, 有望在保持良好p型导电性的情况下在较大范围内实现材料组分的宽域调控, 为开发CuI基多功能透明电子器件提供了重要材料基础。

关键词: Cu1-xMnxI, 透明p型半导体, 可控p型导电性

Abstract:

In the field of optoelectronic devices, p-type transparent semiconductor materials with controllable electrical properties hold significant application value. CuI, as a representative material, still faces considerable technical challenges in terms of preparation processes and doping control. This study successfully developed a new p-type transparent semiconductor material with adjustable electrical properties through manganese cation doping, offering a new approach for the advancement of transparent electronics. The Cu1-xMnxI solid solution film, prepared via reactive magnetron sputtering, exhibits unique performance advantages. Firstly, the material can be fabricated at room temperature while maintaining excellent visible light transparency. Secondly, as the manganese doping concentration (x) increases, the grain size of the film gradually decreases, and pronounced crystal cluster aggregation is observed at higher doping concentrations. X-ray photoelectron spectroscopy analysis reveals that manganese ions in the film exist in a mixed valence state of Mn2+ and Mn3+. Electrical performance characterization shows that the resistivity of the film can be tuned over two orders of magnitude, ranging from 0.017 to 2.5 Ω·cm, while the hole carrier concentration remains stable at a high order of magnitude of 1018-1019 cm-3. Unlike the n-type doping behavior observed in traditional semiconductors, introduction of high-valent manganese ions does not significantly affect the p-type conductivity of the material. This is likely due to the partially localized electronic state formed when manganese replaces cuprous ions. This discovery suggests that the hole conductivity of CuI semiconductors is not easily affected by high-valent manganese ion doping, enabling a wide range of compositional adjustments while maintaining stable p-type conductivity. This study provides a valuable material basis for the development of CuI-based multifunctional transparent electronic devices.

Key words: Cu1-xMnxI, transparent p-type semiconductor, controllable p-type resistivity

中图分类号: