• •
王亮君1, 欧阳玉昭1, 赵俊亮2, 杨长1
收稿日期:
2025-01-15
修回日期:
2025-02-13
作者简介:
王亮君(1998–), 男, 博士研究生. E-mail: 1134420548@qq.com
基金资助:
WANG Liangjun1, OUYANG Yuzhao1, ZHAO Junliang2, YANG Chang1
Received:
2025-01-15
Revised:
2025-02-13
About author:
WANG Liangjun (1998–), male, PhD candidate. E-mail: 1134420548@qq.com
Supported by:
摘要: 在光电子器件领域, 具有可控电学参数的p型透明半导体材料具有重要应用价值。但以CuI为代表的该类材料在制备工艺与掺杂调控方面仍存在显著技术瓶颈。本研究通过锰阳离子掺杂, 成功制备出具有可调电学特性的新型p型透明半导体材料, 为透明电子学发展提供了新思路。采用反应磁控溅射技术制备的Cu1-xMnxI固溶体薄膜展现出独特的性能优势。首先, 该材料可以在室温条件下制备, 并保持优异的可见光透明性。其次, 随着锰掺杂量x值的增加, 薄膜晶粒尺寸逐渐减小, 伴随掺杂浓度提升观察到明显的晶团聚集现象。通过X射线光电子能谱分析, 揭示了薄膜中锰离子以Mn2+和Mn3+混合价态存在。电学性能表征显示, 薄膜电阻率可在0.02~2.50 Ω·cm区间实现两个数量级的可控调节, 同时空穴载流子浓度稳定维持在1018~1019 cm-3的较高值。与传统半导体n型掺杂规律不同, 高价态锰离子的引入未显著影响材料的p型导电特性, 可能源于锰取代亚铜离子后形成的非完全离域电子态。该发现表明CuI半导体的空穴导电特性不易受高价锰离子掺杂的影响, 有望在保持良好p型导电的情况下在较大范围内实现材料组分宽域调控, 为开发CuI基多功能透明电子器件提供了重要材料基础。
中图分类号:
王亮君, 欧阳玉昭, 赵俊亮, 杨长. Cu-Mn-I固溶体薄膜制备及其p型透明导电性质的调控[J]. 无机材料学报, DOI: 10.15541/jim20250022.
WANG Liangjun, OUYANG Yuzhao, ZHAO Junliang, YANG Chang. Preparation of Cu-Mn-I Solid Solution Thin Films and Control of Their p-type Transparent Conductive Properties[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250022.
[1] LIU A, ZHU H H, KIM M G,et al. Engineering copper iodide (CuI) for multifunctional p-type Transparent semiconductors and conductors. Advanced Science, 2021, 8(14): 2100546. [2] THOMAS G.Invisible circuits.Nature, 1997, 389(6654): 907. [3] KAWAZOE H, YASUKAWA M, HYODO H,et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature, 1997, 389(6654): 939. [4] UEDA K, HASE T, YANAGI H,et al. Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition. Journal of Applied Physics, 2001, 89(3): 1790. [5] YANAGI H, HASE T, IBUKI S,et al. Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure. Applied Physics Letters, 2001, 78(11): 1583. [6] KUDO A, YANAGI H, HOSONO H,et al. SrCu2O2 A p-type conductive oxide with wide band gap. Applied Physics Letters, 1998, 73(2): 220. [7] RAGHUPATHY R K M, KÜHNE T D, FELSER C,et al. Rational design of transparent p-type conducting non-oxide materials from high-throughput calculations. Journal of Materials Chemistry C, 2018, 6(3): 541. [8] YANG C, KNEIß M, LORENZ M,et al. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. Proceedings of the National Academy of Sciences, 2016, 113(46): 12929. [9] GENG F J, WANG L J, STRALKA,et al.(111)-oriented growth and acceptor doping of transparent conductive CuI:S thin films by spin coating and radio frequency-sputtering. Advanced Engineering Materials, 2023, 25(11): 2201666. [10] YANG J L, JIANG X L, RUAN S Y,et al. Highly weak-light sensitive and dual-band switchable photodetector based on CuI/Si unilateral heterojunction. Journal of Inorganic Materials, 2024, 39(9): 1063. [11] GRUNDMANN M, SCHEIN F-L, LORENZ M,et al. Cuprous iodide-a p-type transparent semiconductor: history and novel applications. Physica Status Solidi (a), 2013, 210(9): 1671. [12] GRUNDMANN M. Karl Bädeker (1877-1914) and the discovery of transparent conductive materials.Physica Status Solidi (a) - Applications and Materials Science, 2015, 212(7): 1409. [13] CHEN D, WANG Y, LIN Z,et al. Growth strategy and physical properties of the high mobility p-type CuI crystal. Crystal Growth & Design, 2010, 10(5): 2057. [14] JUN T, KIM J, SASASE M,et al. Material design of p-type transparent amorphous semiconductor, Cu-Sn-I. Advance Materials, 2018, 30(12): 1706573. [15] YANG C, SOUCHAY D, KNEIß M, et al. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nature Communications, 2017, 8(1): 16076. [16] ZENG G X, DOU W, GAN X M,et al. Low-voltage solution-processed NaxCu1-xI thin-film transistors for mimicking synaptic plasticity. Applied Physical Letters, 2024, 124(12): 123508. [17] JIANG G G, DOU W, GAN X M, et al. Low-voltage solution-processed P-type Mg-doped CuI thin film transistors with NAND logic function. Applied Physical Letters, 2023, 122(21): 213501. [18] GHAZAL N, MADKOUR M, NAZEER A A, et al. Electrochemical capacitive performance of thermally evaporated Al-doped CuI thin films. RSC Advance, 2021, 11(62): 39262-39269. [19] MIRZA A S, VISHAL B, DALLY P,et al. Cs‐doped and Cs‐S Co-doped CuI p‐type transparent semiconductors with enhanced conductivity. Advanced Functional Materials, 2024, 34(30): 2316144. [20] MUDE N N, BUKKE R N, JIANG J.Transparent, P-channel CuISn thin-film transistor with field effect mobility of 45 cm2·V-1·s-1 and Excellent Bias Stability.Advanced Materials Technologies, 2022, 7(8): 2101434. [21] TAREY R D, RAJU T A.A method for the deposition of transparent conducting thin films of tin oxide.Thin Solid Films, 1985, 128(3/4): 181. [22] LIU A, ZHU H H, W T PARK,et al. Room-temperature solution-synthesized p-type copper(I) iodide semiconductors for transparent thin-film transistors and complementary electronics. Advanced Materials, 2018, 30(34): 1802379. [23] STRELCHUNK V, KOLOMYS O, RARATA S,et al. Raman submicron spatial mapping of individual Mn-doped ZnO nanorods. Nano Epress, 2017, 12: 1. [24] ZI M, LI J, ZHANG Z C,et al. Effect of deposition temperature on transparent conductive properties of γ-CuI film prepared by vacuum thermal evaporation. Physica Status Solidi (a), 2015, 212(7): 1466. [25] SUNG S Y, KIM S Y, JO K M, et al. Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature. Applied Physical Letters, 2010, 97(22): 222109. [26] KYKYNESHI R, MCINTYRE D H, TATE J,et al. Electrical and optical properties of epitaxial transparent conductive BaCuTeF thin films deposited by pulsed laser deposition. Solid State Sciences, 2008, 10(7): 921. [27] ZAKUTAYEV A, MCINTYRE D H, SCHNEIDER G,et al. Tunable properties of wide-band gap p-type BaCu(Ch1-xChx′)F (Ch=S, Se, Te) thin-film solid solutions. Thin Solid Films, 2010, 518(19): 5494. [28] YANG C, KNEIß M, SCHEIN F-L, et al. Room-temperature domain-epitaxy of copper iodide thin films for transparent CuI/ZnO heterojunctions with high rectification ratios larger than 109. Scientific Reports, 2016, 6(1): 21937. [29] YANG C, ROSE E, YU W L,et al. Controllable growth of copper iodide for high-mobility thin films and self-assembled microcrystals. ACS Applied Electronic Materials, 2020, 2(11): 3627. |
[1] | 穆爽, 马沁, 张禹, 沈旭, 杨金山, 董绍明. Yb2Si2O7改性SiC/SiC复合材料的氧化行为研究[J]. 无机材料学报, 2025, 40(3): 323-328. |
[2] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[3] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[4] | 穆浩洁, 张源江, 喻彬, 付秀梅, 周世斌, 李晓东. ZrO2掺杂Y2O3-MgO纳米复相陶瓷的制备及性能研究[J]. 无机材料学报, 2025, 40(3): 281-289. |
[5] | 樊文楷, 杨潇, 李宏华, 李永, 李江涛. 无压烧结制备(Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7高熵陶瓷及其高温抗CMAS腐蚀性能[J]. 无机材料学报, 2025, 40(2): 159-167. |
[6] | 叶君豪, 周真真, 胡辰, 王雁斌, 荆延秋, 李廷松, 程梓秋, 吴俊林, IVANOV Maxim, HRENIAK Dariusz, 李江. 共沉淀纳米粉体制备Yb:Sc2O3透明陶瓷的微结构与光学性能[J]. 无机材料学报, 2025, 40(2): 215-224. |
[7] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[8] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[9] | 张婧慧, 陆晓彤, 毛海雁, 田亚州, 张山林. 烧结助剂对BaZr0.1Ce0.7Y0.2O3-δ电解质烧结行为及电导率的影响[J]. 无机材料学报, 2025, 40(1): 84-90. |
[10] | 鲍伟超, 郭晓杰, 辛晓婷, 彭湃, 王新刚, 刘吉轩, 张国军, 许钫钫. 在碳化物陶瓷中构筑金属原子层分相共生结构[J]. 无机材料学报, 2025, 40(1): 17-22. |
[11] | 王月月, 黄佳慧, 孔红星, 李怀珠, 姚晓红. 载银放射状介孔二氧化硅的制备及其在牙科树脂中的应用[J]. 无机材料学报, 2025, 40(1): 77-83. |
[12] | 王智祥, 陈莹, 逄清阳, 李鑫, 王根水. 碳酸锰掺杂氧化镁基陶瓷的烧结行为和介电性能[J]. 无机材料学报, 2025, 40(1): 97-103. |
[13] | 吕昕怿, 相恒阳, 曾海波. 长程有序助力钙钛矿QLED高性能化[J]. 无机材料学报, 2025, 40(1): 111-112. |
[14] | 孙雨萱, 王政, 时雪, 史颖, 杜文通, 满振勇, 郑嘹赢, 李国荣. Fe掺杂PZT陶瓷缺陷偶极子热稳定性对机电性能影响[J]. 无机材料学报, 0, (): 240244-240244. |
[15] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||