无机材料学报

• 研究论文 •    

基于LLZTO电解质的固态锂金属电池负极界面调控

文伸豪1,2, 彭德招1,2, 林喆与1,2, 郭霞1,2, 黄培鑫1,2, 章志珍1,2   

  1. 1.中山大学,材料学院,广州 510006;
    2.中山大学·深圳,材料学院,深圳 518107
  • 收稿日期:2024-11-22 修回日期:2025-03-04
  • 作者简介:文伸豪,博士研究生. E-mail: wenshh9@mail2.sysu.edu.cn
  • 基金资助:
    广东省科技计划项目(2023B0909060004); 深圳市优秀科技创新人才培养项目(RCYX20221008092929074); 深圳市面上项目(JCYJ20220530150200001); 广东省“珠江人才计划”青年拔尖人才项目(2021QN02L210)

Interface Engineering for the Anode in Solid-state Lithium Batteries Based on LLZTO Electrolyte

WEN Shenhao1,2, PENG Dezhao1,2, LIN Zheyu1,2, GUO Xia1,2, HUANG Peixin1,2, ZHANG Zhizhen1,2   

  1. 1. School of Materials, Sun Yat-sen University, Guangzhou 510006, China;
    2. School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
  • Received:2024-11-22 Revised:2025-03-04
  • About author:WEN Shenhao, PhD candidate. E-mail: wenshh9@mail2.sysu.edu.cn
  • Supported by:
    Guangdong S&T Program (2023B0909060004); Shenzhen Science and Technology Program (RCYX20221008092929074); Shenzhen Fundamental Research Program (JCYJ20220530150200001); Zhujiang Talent Program of Guangdong Province(2021QN02L210)

摘要: 石榴石型固态电解质(LLZTO)具有高离子电导率、宽电化学稳定窗口等优点, 近年来受到了广泛关注。但LLZTO存在与金属锂负极浸润性差、循环过程中锂枝晶生长严重等问题, 限制了其大规模应用前景。本研究通过熔融金属Li和AlF3, 制备了含氟化物(LiF, AlF3)和Li-Al合金的复合负极(LAF)。元素分布分析表明LAF复合负极与LLZTO电解质接触后, 在界面处形成氟化物。与金属锂相比, 该复合负极能与LLZTO形成较小的界面接触角, 使得界面浸润性显著提升。改性后的复合负极与LLZTO的界面电阻仅为3.9 Ω/cm2, 远小于金属Li负极与LLZTO的界面电阻(138.6 Ω/cm2);同时, 临界电流密度从0.2 mA/cm2提升至0.8 mA/cm2。组装的LAF|LLZTO|LAF对称电池在0.2 mA/cm2的电流密度下能稳定沉积/剥离3500 h, 表明LLZTO|LAF界面处具有稳定的锂离子沉积/剥离过程。LiFePO4|LLZTO|LAF准固态电池在0.1C (1C=170 mA/g)电流密度下实现148.7 mAh/g的放电比容量, 且在1C电流密度下循环240圈后, 容量保持率高达96.5%。本研究提出的LAF复合负极有效降低了LLZTO|负极的界面电阻, 并显著提升了锂离子在界面处的沉积/剥离稳定性, 为高性能LLZTO基金属锂电池提供了新的设计思路。

关键词: 锂离子电池, 固态电解质, LLZTO, 负极界面

Abstract: Garnet-type solid electrolytes (LLZTO) have attracted tremendous attention in the past few years, owing to its high ionic conductivity and wide electrochemical stability window. However, its poor wettability with lithium metal and severe lithium dendrite formation during cycling greatly hindered its application in large-scale devices. In this study, a composite anode (LAF) was prepared by melting Li metal and AlF3, which eventually formed fluorides (LiF, AlF3) and Li-Al alloys. Elemental distribution analysis revealed that a fluoride layer was formed at LLZTO|LAF interface upon contact with LLZTO. Compared to metallic lithium, the composite anode forms a significantly smaller interface contact angle with LLZTO, notably improving the interfacial wettability. As a result, the modified LAF|LLZTO interface exhibits an ultralow interfacial resistance of 3.9 Ω/cm2, being much lower than that of the lithium anode with LLZTO (138.6 Ω/cm2). Meanwhile, the critical current density of the composite anode with LLZTO increased from 0.2 mA/cm2 to 0.8 mA/cm2. LAF|LLZTO|LAF symmetric cells demonstrate stable plating/stripping for 3500 h under a current density of 0.2 mA/cm2, illustrating the good stability of lithium-ion plating/stripping process. LiFePO4|LLZTO|LAF quasi-solid-state battery delivers a high discharge capacity of 148.7 mAh/g at 0.1C rate (1C=170 mA/g) and retain 96.5% of its initial capacity after 240 cycles at a current rate of 1C. The LAF composite anode demonstrated in this study effectively decreases the interfacial resistance between LLZTO and anode, and stabilizes lithium-ion plating/stripping process, offering a promising approach for designing high-performance LLZTO-based lithium metal batteries.

Key words: Lithium-ion battery, solid Electrolyte, LLZTO, anode interface

中图分类号: