[1] 徐学笛. 化学电源的发展及展望. 化学工程与装备, 2008(2): 95. [2] XIE J, LU Y C.A retrospective on lithium-ion batteries.Nature Communications, 2020, 11: 2499. [3] 赵光金, 李晶晶, 胡玉霞, 等. 锂离子电池储能电站安全风险及应对策略. 电源技术, 2024, 48(12): 2343. [4] 徐琛. 固态锂电池复合固态电解质研究进展. 中外能源, 2023, 28(9): 18. [5] KIM A, WOO S, KANG M,et al. Research progresses of garnet-type solid electrolytes for developing all-solid-state Li batteries. Frontiers in Chemistry, 2020, 8: 468. [6] WU J, CHEN L, SONG T,et al. A review on structural characteristics, lithium ion diffusion behavior and temperature dependence of conductivity in perovskite-type solid electrolyte Li3-xLa2/3-xTiO3. Functional Materials Letters, 2017, 10(3): 1730002. [7] LI C, LI R, LIU K,et al. NaSICON: a promising solid electrolyte for solid-state sodium batteries. Interdisciplinary Materials, 2022, 1(3): 396. [8] ZHAO Y, DAEMEN L L.Superionic conductivity in lithium-rich anti-perovskites.Journal of the American Chemical Society, 2012, 134(36): 15042. [9] AIMI A, ONODERA H, SHIMONISHI Y, et al. High Li-ion conductivity in pyrochlore-type solid electrolyte Li2-xLa(1+x)/3M2O6F (M= Nb, Ta). Chemistry of Materials, 2024, 36(8): 3717. [10] WANG C, FU K, KAMMAMPATA S P,et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chemical reviews, 2020, 120(10): 4257. [11] MURUGAN R, THANGADURAI V, WEPPNER W.Fast lithium ion conduction in garnet-type Li7La3Zr2O12.Angewandte Chemie International Edition, 2007, 46(41): 7778. [12] CHEN R, NOLAN A M, LU J,et al. The thermal stability of lithium solid electrolytes with metallic lithium. Joule, 2020, 4(4): 812. [13] CHENG E J, DUAN H, WANG M J,et al. Li-stuffed garnet solid electrolytes: current status, challenges, and perspectives for practical. Energy Storage Materials, 2024, 75: 103970. [14] 张念, 任国玺, 章辉, 等. 石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 224. [15] HAN X, GONG Y, FU K,et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 2017, 16(5): 572. [16] PORZ L, SWAMY T, SHELDON B W,et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Advanced Energy Materials, 2017, 7(20): 1701003. [17] SHARAFI A, KAZYAK E, DAVIS A L,et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chemistry of Materials, 2017, 29(18): 7961. [18] DUAN H, CHEN W P, FAN M,et al. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry. Angewandte Chemie, 2020, 132(29): 12167. [19] BI Z, SUN Q, JIA M,et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Advanced Functional Materials, 2022, 32(52): 2208751. [20] RUAN Y, LU Y, LI Y,et al. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries. Advanced Functional Materials, 2021, 31(5): 2007815. [21] LEE S, LEE K S, KIM S, ,et al. Design of a lithiophilic. Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Science Advances, 2022, 8(30): eabq0153 [22] BI Z, HUANG W, MU S,et al. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy, 2021, 90: 106498. [23] BI Z, SHI R, LIU X,et al. In situ conversion reaction triggered alloy@antiperovskite hybrid layers for lithiophilic and robust lithium/garnet interfaces. Advanced Functional Materials, 2023, 33(43): 2307701. [24] ALEXANDER G V, SHI C, O’NEILL J,et al. Extreme lithium-metal cycling enabled by a mixed ion-and electron-conducting garnet three-dimensional architecture. Nature Materials, 2023, 22(9): 1136. [25] FENG W, DONG X, LI P,et al. Interfacial modification of Li/garnet electrolyte by a lithiophilic and breathing interlayer. Journal of Power Sources, 2019, 419: 91. [26] LI Z, ZHENG W, LU G,et al. Superionic conductor enabled composite lithium with high ionic conductivity and interfacial wettability for solid-state lithium batteries. Advanced Functional Materials, 2024, 34(12): 2309751. [27] HU X, YU J, WANG Y,et al. A lithium intrusion-blocking interfacial shield for wide-pressure-range solid-state lithium metal batteries. Advanced Materials, 2024, 36(7): 2308275. [28] CHEN B, ZHANG J, ZHANG T,et al. Directly using Li2CO3 as a lithiophobic interlayer to inhibit Li dendrites for high-performance solid-state batteries. ACS Energy Letters, 2023, 8(5): 2221. [29] SHI K, WAN Z, YANG L,et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angewandte Chemie International Edition, 2020, 59(29): 11784. [30] LU Y, HUANG X, RUAN Y,et al. An in situ element permeation constructed high endurance Li-LLZO interface at high current densities. Journal of Materials Chemistry A, 2018, 6(39): 18853. [31] MA C, JIANG W, DUAN Q,et al. Superdense lithium deposition via mixed ionic/electronic conductive interfaces implanted in vivo/vitro for stable lithium metal batteries. Advanced Energy Materials, 2024, 14(25): 2400202. [32] LI Y, LI J, XIAO H,et al. A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries. Advanced Functional Materials, 2023, 33(14): 2213905. [33] PENG Z, REN F, YANG S,et al. A highly stable host for lithium metal anode enabled by Li9Al4-Li3N-AlN structure. Nano Energy, 2019, 59: 110. [34] SHI X, PANG Y, WANG B,et al. In situ forming LiF nanodecorated electrolyte/electrode interfaces for stable all-solid-state batteries. Materials Today Nano, 2020, 10: 100079. [35] CHEN Y, OUYANG C, SONG L,et al. Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study. The Journal of Physical Chemistry C, 2011, 115(14): 7044. |