无机材料学报 ›› 2023, Vol. 38 ›› Issue (3): 256-269.DOI: 10.15541/jim20220647

• 综述 • 上一篇    下一篇

多尺度晶体材料的原位表征技术与计算模拟研究进展

陈昆峰1(), 胡乾宇1, 刘锋2, 薛冬峰2()   

  1. 1.山东大学 新一代半导体材料研究院 晶体材料国家重点实验室, 济南 250100
    2.中国科学院 深圳先进技术研究院, 多尺度晶体材料研究中心, 深圳 518055
  • 收稿日期:2022-11-01 修回日期:2022-12-20 出版日期:2023-01-19 网络出版日期:2023-01-19
  • 通讯作者: 薛冬峰, 研究员. E-mail: df.xue@siat.ac.cn
  • 作者简介:陈昆峰(1987-), 教授. E-mail: kunfeng.chen@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(51832007);国家自然科学基金(52220105010);国家自然科学基金(52202012);山东省自然科学基金重大基础研究项目(ZR2020ZD35);山东大学齐鲁青年学者项目

Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations

CHEN Kunfeng1(), HU Qianyu1, LIU Feng2, XUE Dongfeng2()   

  1. 1. State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
    2. Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • Received:2022-11-01 Revised:2022-12-20 Published:2023-01-19 Online:2023-01-19
  • Contact: XUE Dongfeng, professor. E-mail: df.xue@siat.ac.cn
  • About author:CHEN Kunfeng(1987-), professor. E-mail: kunfeng.chen@sdu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51832007);National Natural Science Foundation of China(52220105010);National Natural Science Foundation of China(52202012);Natural Science Foundation of Shandong Province(ZR2020ZD35);Qilu Young Scholars Program of Shandong University

摘要:

大尺寸晶体材料是半导体、激光、通讯等领域的基础原料, 大尺寸、高品质晶体材料的制备已成为制约相关行业发展的瓶颈。我国面临的“卡脖子”技术中大多与关键基础材料相关。大尺寸晶体材料制备理论与技术是我国新材料产业高质量发展的一个重要方面, 也是提升相应高技术产业的基础, 突破大尺寸晶体材料的制备理论和技术是获得高品质大尺寸晶体材料的关键。探究并准确理解大尺寸晶体生长机理需要借助原位表征技术和多尺度计算模拟方法。单一的原位表征和模拟技术只能探究特定时间和空间范围内的结晶信息, 为了准确反映结晶过程需要综合应用多种方法。本文综述了最新的多尺度晶体生长研究的原位表征方法、多尺度计算模拟技术以及机器学习方法, 为发展结晶理论和控制晶体品质提供重要的实验和理论依据, 并将为提升大尺寸晶体生长工艺的开发而服务。

关键词: 晶体生长, 多尺度结晶, 振动光谱, 原位观测, 多尺度模拟计算, 综述

Abstract:

Large-sized crystalline materials are the basic raw materials in semiconductors, lasers, and communications. Preparation of large-scale, high-quality crystalline materials has become a bottleneck restricting the development of related industries. Breaking through the preparation theory and technology of large-sized crystal materials is the key to obtaining high-quality large-sized crystals. Preparation process of crystal materials often undergoes nucleation and growth stages, including multiple processes at spatiotemporal scale: from atom/molecules, through clusters and nuclei, to bulk crystals. To further explore and accurately understand the crystal growth mechanism, we need intensively study the multiscale process,multi-scale in situ characterization techniques, and computational simulation methods. Among them, the latest in situ characterization methods for crystal growth includes optical microscopy, electron microscopy, vibration spectra, synchrotron radiation, neutron technology, and especially, machine learning method. Thus, the multi-scale computational simulation techniques for crystallization is introduced, for example, first principles calculation at atom/molecular scale, molecular dynamics simulation, Monte Carlo simulation, phase field simulation at mesoscopic scale, and finite element simulation at macroscopic scale. A single in situ characterization or simulation technique can only explore crystallization information over a specific time and space scale. To accurately and fully reflect the crystallization process, a combination of multi-scale methods is introduced. It can be speculated that the establishment of in situ characterization technology and computational simulation methods for the actual large-sized crystal growth environment will be the future development trend, which provides an important experimental and theoretical basis for developing crystallization theory and controlling crystal quality. Furthermore, it can be deduced that the combination of in situ characterization technology with machine learning and big data technology will be the trend for large-sized crystal growth.

Key words: crystal growth, multi-scale crystallization, vibration spectra, in situ characterization, multi-scale simulations, review

中图分类号: