无机材料学报 ›› 2024, Vol. 39 ›› Issue (11): 1275-1282.DOI: 10.15541/jim20240075 CSTR: 32189.14.10.15541/jim20240075

• 研究论文 • 上一篇    下一篇

镁离子调控无定形碳酸钙制备一水碳酸钙结晶过程

蔡豪(), 汪琦航(), 邹朝勇()   

  1. 武汉理工大学 材料复合新技术国家重点实验室,武汉 430070
  • 收稿日期:2024-02-20 修回日期:2024-03-30 出版日期:2024-11-20 网络出版日期:2024-05-31
  • 通讯作者: 汪琦航, 助理研究员. E-mail: qhwang@whut.edu.cn;
    邹朝勇, 研究员. E-mail: zzou@whut.edu.cn
  • 作者简介:蔡 豪(1999-), 男, 硕士研究生. E-mail: c17596125882@163.com
  • 基金资助:
    国家重点研发计划(2021YFA0715700);国家自然科学基金(21905217);中国博士后科学基金资助项目(2023TQ0254);中央高校基本科研业务费专项资金资助(2023IVA097)

Crystallization Pathway of Monohydrocalcite via Amorphous Calcium Carbonate Regulated by Magnesium Ion

CAI Hao(), WANG Qihang(), ZOU Zhaoyong()   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2024-02-20 Revised:2024-03-30 Published:2024-11-20 Online:2024-05-31
  • Contact: WANG Qihang, lecturer. E-mail: qhwang@whut.edu.cn;
    ZOU Zhaoyong, professor. E-mail: zzou@whut.edu.cn
  • About author:CAI Hao (1999-), male, Master candidate. E-mail: c17596125882@163.com
  • Supported by:
    National Key R&D Program of China(2021YFA0715700);National Natural Science Foundation of China(21905217);China Postdoctoral Science Foundation(2023TQ0254);Fundamental Research Funds for the Central Universities(2023IVA097)

摘要:

无定形碳酸钙(Amorphous Calcium Carbonate,ACC)在生物矿化中具有重要作用, 其结晶过程受到了人们广泛的关注。镁离子(Mg2+)能够有效调控ACC的结晶转变过程, 但其调控ACC转变为一水碳酸钙(Monohydrocalcite, MHC, CaCO3·H2O)晶体的作用机制并不清楚。本研究使用Mg2+作为添加剂, 采用自动电位滴定系统, 原位研究了ACC到MHC的转变过程, 发现Mg2+能够提升ACC的稳定性, 抑制方解石和球霰石的形成。ACC向MHC转变的过程中, 首先发生部分溶解, 随着Ca2+被消耗, 溶液中Mg/Ca摩尔比提高。Mg2+进一步吸附在ACC颗粒表面, 抑制ACC表面溶解, 促使其从内部溶解, 形成富含Mg2+的中空结构以及尺寸更小的纳米颗粒。随后, MHC通过颗粒聚集的方式结晶生长。这些结果解释了Mg2+调控ACC通过非经典结晶方式转变为MHC的机理, 加深了对以ACC为前驱体的生物矿化机制的理解。

关键词: 生物矿化, 无定形碳酸钙, 镁离子, 一水碳酸钙, 晶体生长

Abstract:

Amorphous calcium carbonate (ACC) plays a crucial role in biomineralization which crystallization process has attracted significant attention. Magnesium ions (Mg2+) can effectively regulate the crystallization of ACC, but the mechanism by which it controls the transformation of ACC into monohydrocalcite (MHC, CaCO3·H2O) is not well understood. In this study, Mg2+ was used as an additive, and the transformation process from ACC to MHC was investigated in situ using an automatic potentiometric titration system. It was found that Mg2+ can enhance the stability of ACC and inhibit the formation of calcite and vaterite. During the transformation of ACC to MHC, partial dissolution firstly occurred, and the molar ratio of Mg/Ca in the solution increased with the consumption of Ca2+. Mg2+ further adsorbed onto the surface of ACC particles, inhibiting surface dissolution of ACC and promoting internal dissolution of ACC, resulting in the formation of hollow structures rich in Mg2+ and smaller-sized nanoparticles. Subsequently, MHC crystallized and grew through particle aggregation. These results elucidate the mechanism by which Mg2+ regulates the transformation of ACC into MHC through a non-classical crystallization pathway, enhancing an understanding of the biomineralization mechanism from ACC precursor.

Key words: biomineralization, amorphous calcium carbonate, magnesium ion, monohydrocalcite, crystal growth

中图分类号: