无机材料学报 ›› 2023, Vol. 38 ›› Issue (3): 243-255.DOI: 10.15541/jim20220607

• 综述 • 上一篇    下一篇

GaN单晶的HVPE生长与掺杂进展

齐占国1(), 刘磊1, 王守志1(), 王国栋1, 俞娇仙2, 王忠新1, 段秀兰1, 徐现刚1, 张雷1()   

  1. 1.山东大学 新一代半导体材料研究院, 晶体材料国家重点实验室, 济南 250100
    2.齐鲁工业大学(山东省科学院) 材料科学与工程学院, 济南 250353
  • 收稿日期:2022-10-17 修回日期:2022-11-20 出版日期:2023-01-17 网络出版日期:2023-01-17
  • 通讯作者: 王守志, 研究员. E-mail: wangsz@sdu.edu.cn;
    张 雷, 副教授. E-mail: leizhang528@sdu.edu.cn
  • 作者简介:齐占国(1999-), 男, 博士研究生. E-mail: zhan_guo_2021@163.com
  • 基金资助:
    国家自然科学基金(51872164);国家自然科学基金(52202265)

Progress in GaN Single Crystals: HVPE Growth and Doping

QI Zhanguo1(), LIU Lei1, WANG Shouzhi1(), WANG Guogong1, YU Jiaoxian2, WANG Zhongxin1, DUAN Xiulan1, XU Xiangang1, ZHANG Lei1()   

  1. 1. Institute of Novel Semiconductors, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China
    2. School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
  • Received:2022-10-17 Revised:2022-11-20 Published:2023-01-17 Online:2023-01-17
  • Contact: WANG Shouzhi, professor. E-mail: wangsz@sdu.edu.cn;
    ZHANG Lei, associate professor. E-mail: leizhang528@sdu.edu.cn
  • About author:QI Zhanguo (1999-), male, PhD candidate. E-mail: zhan_guo_2021@163.com
  • Supported by:
    National Natural Science Foundation of China(51872164);National Natural Science Foundation of China(52202265)

摘要:

相比于第一代和第二代半导体材料, 第三代半导体材料具有更高的击穿场强、电子饱和速率、热导率以及更宽的带隙, 更适用于制备高频、大功率、抗辐射、耐腐蚀的电子器件、光电子器件和发光器件。氮化镓(GaN)作为第三代半导体材料的代表之一, 是制作蓝绿激光、射频微波器件和电力电子器件的理想衬底材料, 在激光显示、5G通信、相控阵雷达、航空航天等领域具有广阔的应用前景。氢化物气相外延(Hydride vapor phase epitaxy, HVPE)方法因生长设备简单、生长条件温和和生长速度快而成为制备GaN晶体的主流方法。由于普遍使用石英反应器, HVPE法生长获得的非故意掺杂GaN不可避免地存在施主型杂质Si和O, 使其表现出n型半导体特性, 但载流子浓度高和导电率低限制了其在高频大功率器件中的应用。掺杂是改善半导体材料电学性能最普遍的方法, 通过掺杂不同掺杂剂可以获得不同类型的GaN单晶衬底, 提高其电化学特性, 从而满足市场应用的不同需求。本文介绍了GaN半导体晶体材料的基本结构和性质, 综述了近年来采用HVPE法生长高质量GaN晶体的主要研究进展; 对GaN的掺杂特性、掺杂剂类型、生长工艺以及掺杂原子对电学性能的影响进行了详细介绍。最后简述了HVPE法生长掺杂GaN单晶面临的挑战和机遇, 并展望了GaN单晶的未来发展前景。

关键词: 氮化镓, 氢化物气相外延, 掺杂, 晶体生长, 综述

Abstract:

Compared with the first and second generation semiconductor materials, the third generation semiconductor materials exhibit higher breakdown field strength, higher saturated electron drift velocity, outstanding thermal conductivity, and wider band gap, suitable for manufacturing of electronic devices with high frequency, high power, radiation resistance, corrosion resistant properties, optoelectronic devices and light emitting devices. As one of the representatives of the third generation of semiconductor materials, gallium nitride (GaN) is an ideal substrate material for preparing blue-green laser, radio frequency (RF) microwave and power electronic devices. It has broad application prospects in laser display, 5G communication, phased array radar, aerospace, etc. Hydride vapor phase epitaxy (HVPE) method is the most promising method for growth of GaN crystals due to its simple growth equipment, mild growth conditions and fast growth rate. Due to the widely used quartz reactors, unintentionally doped GaN obtained by HVPE method inevitably has donor impurities (Si and O). Therefore, the grown GaN shows n-type electrical properties, high carrier concentration and low conductivity, which limits its application in high-frequency and high-power devices. Currently, doping is the most common method to improve the electrical performance of semiconductor materials, through which different types of GaN single crystal substrates can be obtained with different dopants to improve their electrochemical characteristics and meet the different needs of market applications. In this article, the basic structure and properties of GaN semiconductor crystal material are introduced, and the recent progress of the high quality GaN crystals grown by HVPE method is reviewed; and the doping characteristics, dopant types, growth process and the influence of doped atoms on the electrical properties of GaN are introduced. Finally, the challenges and opportunities faced by the HVPE method to grow doped GaN crystals are briefly described, and the future developments in several directions are prospected.

Key words: gallium nitride, hydride vapor phase epitaxy, doping, crystal growth, review

中图分类号: