[1] |
IKESUE A, AUNG Y L . Ceramic laser materials. Nature Photonics, 2008,2(12):721-727.
|
[2] |
KRELL A, WAETZIG K, KLIMKE J . Influence of the structure of MgO·nAl2O3 spinel lattices on transparent ceramics processing and properties. Journal of the European Ceramic Society, 2012,32(11):2887-2898.
|
[3] |
FEDOROV P P, OSIKO V V, KUZNETSOV S V , et al. Fluoride laser nanoceramics. Journal of Physics: Conference Series, 2012,345:012017.
|
[4] |
LUPEI V, LUPEI A, IKESUE A . Transparent polycrystalline ceramic laser materials. Optical Materials, 2008,30(11):1781-1786.
|
[5] |
IKESUE A, KAMATA K . Microstructure and optical properties of hot isostatically pressed Nd: YAG ceramics. Journal of the American Ceramic Society, 1996,79(7):1927-1933.
|
[6] |
LI JIANG, WU YU-SONG, PAN YU-BAI , et al. Fabrication, microstructure and properties of highly transparent Nd : YAG laser ceramics. Optical Materials, 2008,31(1):6-17.
|
[7] |
LI JIANG, CHEN FENG, LIU WEN-BIN , et al. Co-precipitation synthesis route to yttrium aluminum garnet (YAG) transparent ceramics. Journal of the European Ceramic Society, 2012,32(11):2971-2979.
|
[8] |
IKESUE A, AUNG Y L . Synthesis of Yb: YAG ceramics without sintering additives and their performance. Journal of the American Ceramic Society, 2017,100(1):26-30.
|
[9] |
PIRRI A, ALDERIGHI D, TOCI G , et al. High-efficiency, high-power and low threshold Yb3+: YAG ceramic laser. Optics Express, 2009,17(25):23344-23349.
|
[10] |
MANGALARAJA R V, MOUZOM J, HEDSTROM P , et al. Combustion synthesis of Y2O3 and Yb-Y2O3 Part I. Nanopowders and their characterization. Journal of Materials Processing Technology, 2008,208(1/2/3):415-422.
|
[11] |
KIM W, BAKER C, VILLALOBOS , et al. Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers. Journal of the American Ceramic Society, 2011,94(9):3001-3005.
|
[12] |
ZHANG LEI, PAN WEI, FENG JING . Dependence of spectroscopic and thermal properties on concentration and temperature for Yb: Y2O3 transparent ceramics. Journal of the European Ceramic Society, 2015,35(9):2547-2554.
|
[13] |
PIRRI A, TOCI G, PATRIZI B , et al. An overview on Yb-doped transparent polycrystalline sesquioxides laser ceramics. IEEE Journal of Selected Topics in Quantum Electronics, 2018,24(5):1-8.
|
[14] |
TOCI G, PIRRI A, PATRIZI B , et al. High efficiency emission of a laser based on Yb-doped (Lu, Y)2O3 ceramic. Optical Materials, 2018,83:182-186.
|
[15] |
LU XIAO, JIANG BEN-XUE, LI JIANG , et al. Synthesis of highly sinterable Yb: Sc2O3 nanopowders for transparent ceramic. Ceramics International, 2013,39(4):4695-4700.
|
[16] |
BASIEV T T, DOROSHENKO M E, KONYUSHKIN V A , et al. Fluoride optical nanoceramics. Russian Chemical Bulletin, 2008,57(5):877-886.
|
[17] |
AKCHURIN M S, BASIEV T T, DEMIDENKO A A , et al. CaF2: Yb laser ceramics. Optical Materials, 2013,35(3):444-450.
|
[18] |
AUBRY P, BENSALAH A, GREDIN P , et al. Synthesis and optical characterizations of Yb-doped CaF2 ceramics. Optical Materials, 2009,31(5):750-753.
|
[19] |
HATCH H E, PARSONS W F, WEAGLEY R J , et al. Hot-pressed polycrystalline CaF2: Dy2+ laser. Applied Physics Letters, 2018,5(8):153-154.
|
[20] |
SIEBOLD M, BOCK S, SCHRAMM U , et al. Yb: CaF2 - a new old laser crystal. Applied Physics B Lasers and Optics, 2009,97(2):327-338.
|
[21] |
HE YI-FENG, XUE YAN-YAN, LIU WEN-QIANG , et al. Structure and property of Yb doped Ca1-xRxF2+x(R= La, Gd) laser crystals. Journal of Inorganic Materials, 2017,32(8):857-862.
|
[22] |
CARDINALI V, MARMOIS E, GARREC B , et al. Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature. Optical Materials, 2022,34(6):990-994.
|
[23] |
TROPF W J . Temperature-dependent refractive-index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe. Optical Engineering, 1995,34(5):1369-1373.
|
[24] |
SIEBOLD M, HORNUNG M, BOEDEFELD R . Terawatt diode- pumped Yb: CaF2 laser. Optics Letters, 2008,33(23):2770-2772.
|
[25] |
SIEBOLD M, ROESER F, LOESER M , et al. PEnELOPE: a High Peak-power Diode-pumped Laser System for Laser-plasma Experiments. Conference on High-Power, High-Energy, and High- Intensity Laser Technology; and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers, 2013,8780:878005.
|
[26] |
LUCCA A, JACQUEMET M, DRUON F , et al. High-power tunable diode-pumped Yb3+: CaF2 laser. Optics Letters, 2004,29(16):1879-1881.
|
[27] |
PIRRI A, ALDERIGHI D, TOCI G , et al. Direct comparison of Yb3+: CaF2 and heavily doped Yb3+: YLF as laser media at room temperature. Optics Express, 2009,17(20):18312-18319.
|
[28] |
PANG SI-YUAN, QIAN XIAO-BO, WU QING-HUI , et al. Structure and spectral property of Sc doped Nd: CaF2 laser crystals. Journal of Inorganic Materials, 2018,33(8):873-876.
|
[29] |
BASIEV T T, DOROSHENKO M E, FEDOROV P P , et al. Efficient laser based on CaF2-SrF2-YbF3 nanoceramics. Optics Letters, 2008,33(5):521-523.
|
[30] |
DUKEL'SKII K V, MIRONOV I A, DEMIDENKO V A , et al. Optical fluoride nanoceramic. Journal of Optical Technology, 2008,75(11):728-736.
|
[31] |
LYBERIS A, PATRIARCHE G, GREDIN P , et al. Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. Journal of the European Ceramic Society, 2011,31(9):1619-1630.
|
[32] |
LYBERIS A, STEVENSON A J, SUGANUMA A , et al. Effect of Yb3+ concentration on optical properties of Yb: CaF2 transparent ceramics. Optical Materials, 2012,34(6):965-968.
|
[33] |
KALLEL T, HASSAIRI M A, DAMMAK M , et al. Spectra and energy levels of Yb3+ ions in CaF2 transparent ceramics. Journal of Alloys and Compounds, 2014,584(7):261-268.
|
[34] |
LI WEI-WEI, MEI BING-CHU, SONG JING-HONG , et al. Yb3+ doped CaF2 transparent ceramics by spark plasma sintering. Journal of Alloys and Compounds, 2016,660:370-374.
|
[35] |
ABALLEA P, SUGANUMA A, DRUON F . Laser performance of diode-pumped Yb: CaF2 optical ceramics synthesized using an energy- efficient process. Optica, 2015,2(4):288-291.
|
[36] |
SARTHOU J, ABALLÉA P, PATRIARCHE G , et al. Wet-route synthesis and characterization of Yb: CaF2 optical ceramics. Journal of the American Ceramic Society, 2016,99(6):1992-2000.
|
[37] |
KITAJIMA S, YAMAKADO K, SHIRAKAWA A , et al. Yb3+-doped CaF2-LaF3 ceramics laser. Optics Letters, 2017,42(9):1724-1727.
|
[38] |
KÜHN H, FREDRICH-THORNTON S T, KRÄNKEL C , et al. Model for the calculation of radiation trapping and description of the pinhole method. Optics Letters, 2007,32(13):1908-1910.
|
[39] |
TOCI G . Lifetime measurements with the pinhole method in presence of radiation trapping: I—theoretical model. Applied Physics B, 2012,106(1):63-71.
|
[40] |
KRELL A, HUTZLER T, KLIMKE J , et al. Transmission physics and consequences for materials selection, manufacturing, and applications. Journal of the European Ceramic Society, 2009,29(2):201-221.
|
[41] |
GUO YUE, LU SHUN-BIN, SU LIANG-BI , et al. Z-scan measurement of the nonlinear refractive index of Nd3+, Y3+-codoped CaF2 and SrF2 crystals. Applied Optics, 2015,54(4):953-958.
|
[42] |
ITO M, GOUTAUDIER C, GUYOT Y , et al. Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-xYbxF2+x. Journal of Physics: Condensed Matter, 2004,16:1501-1521.
|