无机材料学报 ›› 2023, Vol. 38 ›› Issue (10): 1230-1236.DOI: 10.15541/jim20230068 CSTR: 32189.14.10.15541/jim20230068
万家宝1(), 张明辉2(
), 苏怀宇2, 曹枝军2, 刘学超2, 谢坚生2, 王祥远2, 时英辉2, 王亮2, 雷水金1(
)
收稿日期:
2023-02-10
修回日期:
2023-02-24
出版日期:
2023-10-20
网络出版日期:
2023-03-23
通讯作者:
雷水金, 教授. E-mail: shjlei@ncu.edu.cn;作者简介:
万家宝(1998-), 男, 硕士研究生. E-mail: jbwan_siccas@126.com
WAN Jiabao1(), ZHANG Minghui2(
), SU Huaiyu2, CAO Zhijun2, LIU Xuechao2, XIE Jiansheng2, WANG Xiangyuan2, SHI Yinghui2, WANG Liang2, LEI Shuijin1(
)
Received:
2023-02-10
Revised:
2023-02-24
Published:
2023-10-20
Online:
2023-03-23
Contact:
LEI Shuijin, professor. E-mail: shjlei@ncu.edu.cn;About author:
WAN Jiabao (1998-), male, Master candidate. E-mail: jbwan_siccas@126.com
Supported by:
摘要:
La2O3-TiO2玻璃以其折射率高、光学性能优异,在透镜、光学窗口、光通信等领域具有广阔的应用前景。受限于玻璃形成能力, 人们难以制备出大尺寸La2O3-TiO2玻璃, 这严重限制其应用。本研究通过引入网络形成体GeO2, 有效提高了玻璃形成能力, 从而可用常规方法制备大尺寸的GeO2-La2O3-TiO2(GLT)玻璃。差热分析表明, GLT玻璃具有较高的玻璃转变温度和抗析晶性能, 玻璃转变温度Tg和ΔT (ΔT=Tc-onset-Tg)分别大于833和209 ℃。最大折射率为2.06, 在可见光和近红外波段的透过率可达78%。实验还研究了Ti含量对GLT玻璃结构、热学和光学性能的影响。结果表明, 随着钛含量增加, 玻璃的形成能力和热稳定性均减弱。摩尔体积Vm和氧离子极化率αi的变化趋势与折射率一致。GLT玻璃对开发高性能、轻量化、小尺寸的新型器件具有重要意义。
中图分类号:
万家宝, 张明辉, 苏怀宇, 曹枝军, 刘学超, 谢坚生, 王祥远, 时英辉, 王亮, 雷水金. GeO2-La2O3-TiO2玻璃的结构、热学和光学性质[J]. 无机材料学报, 2023, 38(10): 1230-1236.
WAN Jiabao, ZHANG Minghui, SU Huaiyu, CAO Zhijun, LIU Xuechao, XIE Jiansheng, WANG Xiangyuan, SHI Yinghui, WANG Liang, LEI Shuijin. Structural, Thermal, and Optical Properties of GeO2-La2O3-TiO2 Glasses[J]. Journal of Inorganic Materials, 2023, 38(10): 1230-1236.
Fig. 1 DTA curves of GLT-(1-5) glasses (a) DTA curves of the GLT-(1-5) glasses; (b) DTA curve of the GLT-3 glass with inset showing an enlarged view of the glass transition; (c) Glass transition temperature Tg and crystallization onset temperature Tx varied with the change of the glasses composition with inset showing the difference of ΔT (ΔT=Tx−Tg)
Fig. 5 Refractive index curves (a) of GLT-(1-5) glasses at 300-800 nm wavelength, the dependence (b) of refractive index nd and Abbe number on the TiO2 content Colorful figures are available on website
Sample | TiO2 content/ % (in mol) | Weight, m/g | True density, ρ/(g·cm-3) | Molar volume, Vm/(cm3·mol-1) | Electron polarizability of oxygen, αO/(×10-3, nm3) |
---|---|---|---|---|---|
GLT-1 | 45 | 4.8063 | 5.02 | 30.06 | 2.388 |
GLT-2 | 47 | 4.4328 | 5.06 | 29.72 | 2.389 |
GLT-3 | 49 | 4.5602 | 5.05 | 29.67 | 2.406 |
GLT-4 | 51 | 4.2007 | 5.01 | 29.86 | 2.406 |
GLT-5 | 53 | 4.7872 | 5.00 | 29.82 | 2.420 |
Table 1 Density, molar volume and oxygen ions polarizability of GLT-(1-5) glasses
Sample | TiO2 content/ % (in mol) | Weight, m/g | True density, ρ/(g·cm-3) | Molar volume, Vm/(cm3·mol-1) | Electron polarizability of oxygen, αO/(×10-3, nm3) |
---|---|---|---|---|---|
GLT-1 | 45 | 4.8063 | 5.02 | 30.06 | 2.388 |
GLT-2 | 47 | 4.4328 | 5.06 | 29.72 | 2.389 |
GLT-3 | 49 | 4.5602 | 5.05 | 29.67 | 2.406 |
GLT-4 | 51 | 4.2007 | 5.01 | 29.86 | 2.406 |
GLT-5 | 53 | 4.7872 | 5.00 | 29.82 | 2.420 |
[1] | XIE J, ZHANG M, GUO R, et al. Investigation of optical and thermal properties in Er3+-doped Ga2O3-La2O3-Ta2O5 glasses fabricated by containerless solidification. Journal of Alloys and Compounds, 2021, 872: 159651. |
[2] |
CAURANT D, GOURIER D, PRASSAS M. Electron-paramagnetic- resonance study of silver halide photochromic glasses: darkening mechanism. Journal of Applied Physics, 1992, 71(3): 1081.
DOI URL |
[3] |
KANEKO M, YU J, MASUNO A, et al. Glass formation in LaO3/2-TiO2 binary system by containerless processing. Journal of the American Ceramic Society, 2012, 95(1): 79.
DOI URL |
[4] | MASUNO A, WATANABE Y, INOUE H, et al. Glass-forming region and high refractive index of TiO2-based glasses prepared by containerless processing. Physica Status Solidi (c), 2012, 9(12): 2424. |
[5] | ZHANG J, ZHANG X, LI Y, et al. High-entropy oxides 10La2O3- 20TiO2-10Nb2O5-20WO3-20ZrO2 amorphous spheres prepared by containerless solidification. Materials Letters, 2019, 24: 167. |
[6] |
ARAI Y, ITOH K, KOHARA S, et al. Refractive index calculation using the structural properties of La4Ti9O24 glass. Journal of Applied Physics, 2008, 103(9): 094905.
DOI URL |
[7] |
GREEGOR R B, LYTLE F W, SANDSTROM, et al. Investigation of TiO2-SiO2 glasses by X-ray absorption spectroscopy. Journal of Non-Crystalline Solids, 1983, 55(1): 27.
DOI URL |
[8] |
CORMIER L, GASKELL P H, CALAS G, et al. Medium-range order around titanium in a silicate glass studied by neutron diffraction with isotopic substitution. Physical Review B, 1998, 58(17): 11322.
DOI URL |
[9] |
FARGES F, BROWN G E, NAVROTSKY A, et al.Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure. Geochimica et Cosmochimica Acta, 1996, 60(16): 3039.
DOI URL |
[10] |
DUOERKUN G, ZHANG Y, SHI Z, et al. Construction of n-TiO2/ p-Ag2O junction on carbon fiber cloth with VIS-NIR photoresponse as a filter-membrane-shaped photocatalyst. Advanced Fiber Materials, 2020, 2(1): 13.
DOI |
[11] |
SUN Y, MWANDEJE J B, WANGATIA L M, et al. Enhanced photocatalytic performance of surface-modified TiO2 nanofibers with rhodizonic acid. Advanced Fiber Materials, 2020, 2(5): 118.
DOI |
[12] | MAO Z Z, DUAN J, ZHENG X J, et al. Study on optical properties of La2O3-TiO2-Nb2O5 glasses prepared by containerless processing. Ceramics International, 2015, 41(Sl): S51. |
[13] | LI Y, ZHANG X, QI X, et al. High refractive index LaGaO3-TiO2 amorphous spheres prepared by containerless solidification. Materials Letters, 2018, 215: 148. |
[14] |
HAN J, WANG Z, LI J, et al. Large-sized La2O3-TiO2 high refractive glasses with low SiO2fraction by hot-press sintering. International Journal of Applied Glass Science, 2019, 10(3): 371.
DOI URL |
[15] | HUANG S J, XIAO Y B, LIU J L, et al. Nd3+-doped antimony germanate glass for 1.06 μm fiber lasers. Journal of Non- Crystalline Solids, 2019, 518: 10. |
[16] |
KAMITSOS E I, YIANNOPOULOS Y, KARAKASSIDESN M A, et al. Raman and infrared structural investigation of xRb2O·(1-x)GeO2 glasses. The Journal of Physical Chemistry, 1996, 100(28): 11755.
DOI URL |
[17] | WANG L L, GUO Y Y, GAO C M, et al. Preparation and spectral properties of Ho3+/Tm3+ co-doped germanium glass active optical fiber material. Proceedings of SPIE--The International Society For Optical Engineering, 2014(9295): 92950F. |
[18] | LIU H, GE X, HU Q, et al. A new sight into the glass forming ability caused by doping on Ba-and Ti-site in BaTi2O5 glass. Journal of Materials Science & Technology, 2020, 54(19): 112. |
[19] | RAJINDER K, ATUL K, MARINA G B, et al. Structural, thermal and optical characterization of co-existing glass and anti-glass phases of xLa2O3-(100-x)TeO2 and 2TiO2-xLa2O3-(98-x)TeO2 systems. Journal of Non-Crystalline Solids, 2020, 540(C): 120117. |
[20] | CHEN D D, LIU Y H, ZHANG Q Y, et al. Thermal stablity and spectroscopic properties of Er3+-doped niobium tellurite galsses for broadband amplifiers. Materials Chemistry and Physics of Applied Physics, 2005, 90(1): 78. |
[21] | CHUMAKOV A I, MONACO G, FONTANA A, et al. Role of disorder in the thermodynamics and atomic dynamics of glasses. Physical Review B: Condensed Matter & Materials Physics, 2014, 112(2): 025502. |
[22] | WANG W H. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106(C): 100561. |
[23] | ZHANG L Y, LI H, HU L L. Statistical structure analysis of GeO2 modified Yb3+: phosphate glasses based on Raman and FTIR study. Journal of Alloys and Compounds, 2017, 698: 103. |
[24] | CAO W, HUANG F, YE R, et al. Structural and fluorescence properties of Ho3+ /Yb3+ doped germanosilicate glasses tailored by Lu2O3. Journal of Alloys and Compounds, 2018, 746: 540. |
[25] | FAN X, LI K, LI X, et al. Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers. Journal of Alloys and Compounds, 2014, 615: 475. |
[26] |
YOSHIHIRO A, DAVIDE C. Determination of combined water in glasses by infrared spectroscopy. Journal of Materials Science Letters, 2004, 9(2): 244.
DOI URL |
[27] |
HARRISON A J. Water content and infrared transmission of simple glasses. Journal of the American Ceramic Society, 1947, 30(12): 362.
DOI URL |
[28] |
HIROTA S, IZUMITANI T. Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in borate glasses. Journal of Non-Crystalline Solids, 1978, 29(1): 109.
DOI URL |
[29] |
REN G, CAO W, LEI R, et al. Observation of efficient Er3+: 4I11/2 → 4I13/2 transition in highly Er3+ doped germanosilicate glass. Ceramics International, 2018, 44(14): 16868.
DOI URL |
[30] |
INOUE H, WATANABE Y, MASUNO A, et al. Effect of substituting Al2O3 and ZrO2 on thermal and optical properties of high refractive index La2O3-TiO2 glass system prepared by containerless processing. Optical Materials, 2011, 33(12): 1853.
DOI URL |
[31] | ERSUNDU A E, ÇELIKBILEK M, BAAZOUZI M, et al. Characterization of new Sb2O3-based multicomponent heavy metal oxide glasses. Journal of Alloys and Compounds, 2014, 615(C): 712. |
[32] |
DIMITROV V, KOMATSU T. Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. Journal of Non-Crystalline Solids, 1999, 249(2): 160.
DOI URL |
[33] | YOSHIMOTO K, MASUNO A, INOUE H, et al. Transparent and high refractive index La2O3-WO3 glass prepared using containerless processing. Journal of the American Ceramic Society, 2012, 95(11): 063520. |
[34] | MASUNO A, INOUE H, YU J, et al. Refractive index dispersion, optical transmittance, and Raman scattering of BaTi2O5 glass. Journal of Applied Physics, 2010, 108(6): 1081. |
[1] | 苗鑫, 闫世强, 韦金豆, 吴超, 樊文浩, 陈少平. Te基热电器件反常界面层生长行为及界面稳定性研究[J]. 无机材料学报, 2024, 39(8): 903-910. |
[2] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. |
[3] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
[4] | 刘丁, 于洋, 米乐, 于云, 宋力昕. 有机/无机杂化室温固化热控涂层的制备[J]. 无机材料学报, 2018, 33(8): 914-918. |
[5] | 范广新, 刘泽萍, 闻寅, 刘宝忠. 硅烷偶联剂表面处理对LiNi0.8Co0.15Al0.05O2结构和性能的影响[J]. 无机材料学报, 2018, 33(7): 749-755. |
[6] | 杨景锋, 王齐华, 王廷梅. 氧化铝气凝胶的合成与性能[J]. 无机材料学报, 2018, 33(3): 259-265. |
[7] | 张恒飞, 刘为, 雷姣姣, 宋华庭, 漆虹. Pd掺杂量对有机无机杂化SiO2膜H2/CO2分离性能和水热稳定性能的影响[J]. 无机材料学报, 2018, 33(12): 1316-1322. |
[8] | 王觅堂, 方 龙, 李 梅, 柳召刚, 胡艳宏, 张晓伟. 稀土掺杂对ZnO-B2O3-SiO2玻璃热稳定性及结构的影响[J]. 无机材料学报, 2017, 32(6): 643-648. |
[9] | 龙佩青, 刘希涛, 易志国. 制备工艺对(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3无铅压电陶瓷结构与性能的影响[J]. 无机材料学报, 2017, 32(3): 299-304. |
[10] | 伍青峰, 崔亚娟, 张海龙, 周 怡, 兰 丽, 王健礼, 陈耀强. 改进共沉淀法以提高三效催化剂中铈锆复合氧化物的热稳定性[J]. 无机材料学报, 2017, 32(3): 331-336. |
[11] | 谢晓华, 李晓哲, 李为标, 邵光杰, 夏保佳. PET基陶瓷隔膜的制备及性能研究[J]. 无机材料学报, 2016, 31(12): 1301-1305. |
[12] | 李宪华, 张雷刚, 王雪雪, 于清波. PANI载的孔状g-C3N4的界面聚合法制备与光催化性能研究[J]. 无机材料学报, 2015, 30(10): 1018-1024. |
[13] | 陈 辰, 张海斌, 彭述明, 赵林杰, 朱建国. Ti3AlC2体材料的高温临氢行为研究[J]. 无机材料学报, 2014, 29(8): 864-868. |
[14] | 尹冬梅, 屠德阳, 车丙晨, 张芳芳, 林常规, 戴世勋. Sn对Ge-Se-Te玻璃结构与光学特性的影响[J]. 无机材料学报, 2014, 29(3): 279-283. |
[15] | 叶龙强, 张清华, 张雨露, 张欣向, 江 波. 耐摩擦和高透过SiO2/TiO2/SiO2-TiO2增透膜的设计和制备[J]. 无机材料学报, 2012, 27(8): 871-875. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||