无机材料学报 ›› 2023, Vol. 38 ›› Issue (10): 1230-1236.DOI: 10.15541/jim20230068 CSTR: 32189.14.10.15541/jim20230068
        
               		万家宝1( ), 张明辉2(
), 张明辉2( ), 苏怀宇2, 曹枝军2, 刘学超2, 谢坚生2, 王祥远2, 时英辉2, 王亮2, 雷水金1(
), 苏怀宇2, 曹枝军2, 刘学超2, 谢坚生2, 王祥远2, 时英辉2, 王亮2, 雷水金1( )
)
                  
        
        
        
        
    
收稿日期:2023-02-10
									
				
											修回日期:2023-02-24
									
				
									
				
											出版日期:2023-10-20
									
				
											网络出版日期:2023-03-23
									
			通讯作者:
					雷水金, 教授. E-mail: shjlei@ncu.edu.cn;作者简介:万家宝(1998-), 男, 硕士研究生. E-mail: jbwan_siccas@126.com
				
							
        
               		WAN Jiabao1( ), ZHANG Minghui2(
), ZHANG Minghui2( ), SU Huaiyu2, CAO Zhijun2, LIU Xuechao2, XIE Jiansheng2, WANG Xiangyuan2, SHI Yinghui2, WANG Liang2, LEI Shuijin1(
), SU Huaiyu2, CAO Zhijun2, LIU Xuechao2, XIE Jiansheng2, WANG Xiangyuan2, SHI Yinghui2, WANG Liang2, LEI Shuijin1( )
)
			  
			
			
			
                
        
    
Received:2023-02-10
									
				
											Revised:2023-02-24
									
				
									
				
											Published:2023-10-20
									
				
											Online:2023-03-23
									
			Contact:
					LEI Shuijin, professor. E-mail: shjlei@ncu.edu.cn;About author:WAN Jiabao (1998-), male, Master candidate. E-mail: jbwan_siccas@126.com				
							Supported by:摘要:
La2O3-TiO2玻璃以其折射率高、光学性能优异,在透镜、光学窗口、光通信等领域具有广阔的应用前景。受限于玻璃形成能力, 人们难以制备出大尺寸La2O3-TiO2玻璃, 这严重限制其应用。本研究通过引入网络形成体GeO2, 有效提高了玻璃形成能力, 从而可用常规方法制备大尺寸的GeO2-La2O3-TiO2(GLT)玻璃。差热分析表明, GLT玻璃具有较高的玻璃转变温度和抗析晶性能, 玻璃转变温度Tg和ΔT (ΔT=Tc-onset-Tg)分别大于833和209 ℃。最大折射率为2.06, 在可见光和近红外波段的透过率可达78%。实验还研究了Ti含量对GLT玻璃结构、热学和光学性能的影响。结果表明, 随着钛含量增加, 玻璃的形成能力和热稳定性均减弱。摩尔体积Vm和氧离子极化率αi的变化趋势与折射率一致。GLT玻璃对开发高性能、轻量化、小尺寸的新型器件具有重要意义。
中图分类号:
万家宝, 张明辉, 苏怀宇, 曹枝军, 刘学超, 谢坚生, 王祥远, 时英辉, 王亮, 雷水金. GeO2-La2O3-TiO2玻璃的结构、热学和光学性质[J]. 无机材料学报, 2023, 38(10): 1230-1236.
WAN Jiabao, ZHANG Minghui, SU Huaiyu, CAO Zhijun, LIU Xuechao, XIE Jiansheng, WANG Xiangyuan, SHI Yinghui, WANG Liang, LEI Shuijin. Structural, Thermal, and Optical Properties of GeO2-La2O3-TiO2 Glasses[J]. Journal of Inorganic Materials, 2023, 38(10): 1230-1236.
 
																																											Fig. 1 DTA curves of GLT-(1-5) glasses (a) DTA curves of the GLT-(1-5) glasses; (b) DTA curve of the GLT-3 glass with inset showing an enlarged view of the glass transition; (c) Glass transition temperature Tg and crystallization onset temperature Tx varied with the change of the glasses composition with inset showing the difference of ΔT (ΔT=Tx−Tg)
 
																																											Fig. 5 Refractive index curves (a) of GLT-(1-5) glasses at 300-800 nm wavelength, the dependence (b) of refractive index nd and Abbe number on the TiO2 content Colorful figures are available on website
| Sample | TiO2 content/ % (in mol) | Weight, m/g | True density, ρ/(g·cm-3) | Molar volume, Vm/(cm3·mol-1) | Electron polarizability of oxygen, αO/(×10-3, nm3) | 
|---|---|---|---|---|---|
| GLT-1 | 45 | 4.8063 | 5.02 | 30.06 | 2.388 | 
| GLT-2 | 47 | 4.4328 | 5.06 | 29.72 | 2.389 | 
| GLT-3 | 49 | 4.5602 | 5.05 | 29.67 | 2.406 | 
| GLT-4 | 51 | 4.2007 | 5.01 | 29.86 | 2.406 | 
| GLT-5 | 53 | 4.7872 | 5.00 | 29.82 | 2.420 | 
Table 1 Density, molar volume and oxygen ions polarizability of GLT-(1-5) glasses
| Sample | TiO2 content/ % (in mol) | Weight, m/g | True density, ρ/(g·cm-3) | Molar volume, Vm/(cm3·mol-1) | Electron polarizability of oxygen, αO/(×10-3, nm3) | 
|---|---|---|---|---|---|
| GLT-1 | 45 | 4.8063 | 5.02 | 30.06 | 2.388 | 
| GLT-2 | 47 | 4.4328 | 5.06 | 29.72 | 2.389 | 
| GLT-3 | 49 | 4.5602 | 5.05 | 29.67 | 2.406 | 
| GLT-4 | 51 | 4.2007 | 5.01 | 29.86 | 2.406 | 
| GLT-5 | 53 | 4.7872 | 5.00 | 29.82 | 2.420 | 
| [1] | XIE J, ZHANG M, GUO R, et al. Investigation of optical and thermal properties in Er3+-doped Ga2O3-La2O3-Ta2O5 glasses fabricated by containerless solidification. Journal of Alloys and Compounds, 2021, 872: 159651. | 
| [2] | CAURANT D, GOURIER D, PRASSAS M. Electron-paramagnetic- resonance study of silver halide photochromic glasses: darkening mechanism. Journal of Applied Physics, 1992,  71(3): 1081. DOI URL | 
| [3] | KANEKO M, YU J, MASUNO A,  et al. Glass formation in LaO3/2-TiO2 binary system by containerless processing. Journal of the American Ceramic Society, 2012,  95(1): 79. DOI URL | 
| [4] | MASUNO A, WATANABE Y, INOUE H, et al. Glass-forming region and high refractive index of TiO2-based glasses prepared by containerless processing. Physica Status Solidi (c), 2012, 9(12): 2424. | 
| [5] | ZHANG J, ZHANG X, LI Y, et al. High-entropy oxides 10La2O3- 20TiO2-10Nb2O5-20WO3-20ZrO2 amorphous spheres prepared by containerless solidification. Materials Letters, 2019, 24: 167. | 
| [6] | ARAI Y, ITOH K, KOHARA S,  et al. Refractive index calculation using the structural properties of La4Ti9O24 glass. Journal of Applied Physics, 2008,  103(9): 094905. DOI URL | 
| [7] | GREEGOR R B, LYTLE F W, SANDSTROM,  et al. Investigation of TiO2-SiO2 glasses by X-ray absorption spectroscopy. Journal of Non-Crystalline Solids, 1983,  55(1): 27. DOI URL | 
| [8] | CORMIER L, GASKELL P H, CALAS G,  et al. Medium-range order around titanium in a silicate glass studied by neutron diffraction with isotopic substitution. Physical Review B, 1998,  58(17): 11322. DOI URL | 
| [9] | FARGES F, BROWN G E, NAVROTSKY A,  et al.Coordination chemistry of Ti(IV) in silicate glasses and melts: II. Glasses at ambient temperature and pressure. Geochimica et Cosmochimica Acta, 1996,  60(16): 3039. DOI URL | 
| [10] | DUOERKUN G, ZHANG Y, SHI Z,  et al. Construction of n-TiO2/ p-Ag2O junction on carbon fiber cloth with VIS-NIR photoresponse as a filter-membrane-shaped photocatalyst. Advanced Fiber Materials, 2020,  2(1): 13. DOI | 
| [11] | SUN Y, MWANDEJE J B, WANGATIA L M,  et al. Enhanced photocatalytic performance of surface-modified TiO2 nanofibers with rhodizonic acid. Advanced Fiber Materials, 2020,  2(5): 118. DOI | 
| [12] | MAO Z Z, DUAN J, ZHENG X J, et al. Study on optical properties of La2O3-TiO2-Nb2O5 glasses prepared by containerless processing. Ceramics International, 2015, 41(Sl): S51. | 
| [13] | LI Y, ZHANG X, QI X, et al. High refractive index LaGaO3-TiO2 amorphous spheres prepared by containerless solidification. Materials Letters, 2018, 215: 148. | 
| [14] | HAN J, WANG Z, LI J,  et al. Large-sized La2O3-TiO2 high refractive glasses with low SiO2fraction by hot-press sintering. International Journal of Applied Glass Science, 2019,  10(3): 371. DOI URL | 
| [15] | HUANG S J, XIAO Y B, LIU J L, et al. Nd3+-doped antimony germanate glass for 1.06 μm fiber lasers. Journal of Non- Crystalline Solids, 2019, 518: 10. | 
| [16] | KAMITSOS E I, YIANNOPOULOS Y, KARAKASSIDESN M A,  et al. Raman and infrared structural investigation of xRb2O·(1-x)GeO2 glasses. The Journal of Physical Chemistry, 1996,  100(28): 11755. DOI URL | 
| [17] | WANG L L, GUO Y Y, GAO C M, et al. Preparation and spectral properties of Ho3+/Tm3+ co-doped germanium glass active optical fiber material. Proceedings of SPIE--The International Society For Optical Engineering, 2014(9295): 92950F. | 
| [18] | LIU H, GE X, HU Q, et al. A new sight into the glass forming ability caused by doping on Ba-and Ti-site in BaTi2O5 glass. Journal of Materials Science & Technology, 2020, 54(19): 112. | 
| [19] | RAJINDER K, ATUL K, MARINA G B, et al. Structural, thermal and optical characterization of co-existing glass and anti-glass phases of xLa2O3-(100-x)TeO2 and 2TiO2-xLa2O3-(98-x)TeO2 systems. Journal of Non-Crystalline Solids, 2020, 540(C): 120117. | 
| [20] | CHEN D D, LIU Y H, ZHANG Q Y, et al. Thermal stablity and spectroscopic properties of Er3+-doped niobium tellurite galsses for broadband amplifiers. Materials Chemistry and Physics of Applied Physics, 2005, 90(1): 78. | 
| [21] | CHUMAKOV A I, MONACO G, FONTANA A, et al. Role of disorder in the thermodynamics and atomic dynamics of glasses. Physical Review B: Condensed Matter & Materials Physics, 2014, 112(2): 025502. | 
| [22] | WANG W H. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106(C): 100561. | 
| [23] | ZHANG L Y, LI H, HU L L. Statistical structure analysis of GeO2 modified Yb3+: phosphate glasses based on Raman and FTIR study. Journal of Alloys and Compounds, 2017, 698: 103. | 
| [24] | CAO W, HUANG F, YE R, et al. Structural and fluorescence properties of Ho3+ /Yb3+ doped germanosilicate glasses tailored by Lu2O3. Journal of Alloys and Compounds, 2018, 746: 540. | 
| [25] | FAN X, LI K, LI X, et al. Spectroscopic properties of 2.7 μm emission in Er3+ doped telluride glasses and fibers. Journal of Alloys and Compounds, 2014, 615: 475. | 
| [26] | YOSHIHIRO A, DAVIDE C. Determination of combined water in glasses by infrared spectroscopy. Journal of Materials Science Letters, 2004,  9(2): 244. DOI URL | 
| [27] | HARRISON A J. Water content and infrared transmission of simple glasses. Journal of the American Ceramic Society, 1947,  30(12): 362. DOI URL | 
| [28] | HIROTA S, IZUMITANI T. Effect of cations on the inherent absorption wavelength and the oscillator strength of ultraviolet absorptions in borate glasses. Journal of Non-Crystalline Solids, 1978,  29(1): 109. DOI URL | 
| [29] | REN G, CAO W, LEI R,  et al. Observation of efficient Er3+: 4I11/2 → 4I13/2 transition in highly Er3+ doped germanosilicate glass. Ceramics International, 2018,  44(14): 16868. DOI URL | 
| [30] | INOUE H, WATANABE Y, MASUNO A,  et al. Effect of substituting Al2O3 and ZrO2 on thermal and optical properties of high refractive index La2O3-TiO2 glass system prepared by containerless processing. Optical Materials, 2011,  33(12): 1853. DOI URL | 
| [31] | ERSUNDU A E, ÇELIKBILEK M, BAAZOUZI M, et al. Characterization of new Sb2O3-based multicomponent heavy metal oxide glasses. Journal of Alloys and Compounds, 2014, 615(C): 712. | 
| [32] | DIMITROV V, KOMATSU T. Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. Journal of Non-Crystalline Solids, 1999,  249(2): 160. DOI URL | 
| [33] | YOSHIMOTO K, MASUNO A, INOUE H, et al. Transparent and high refractive index La2O3-WO3 glass prepared using containerless processing. Journal of the American Ceramic Society, 2012, 95(11): 063520. | 
| [34] | MASUNO A, INOUE H, YU J, et al. Refractive index dispersion, optical transmittance, and Raman scattering of BaTi2O5 glass. Journal of Applied Physics, 2010, 108(6): 1081. | 
| [1] | 苗鑫, 闫世强, 韦金豆, 吴超, 樊文浩, 陈少平. Te基热电器件反常界面层生长行为及界面稳定性研究[J]. 无机材料学报, 2024, 39(8): 903-910. | 
| [2] | 肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806. | 
| [3] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. | 
| [4] | 刘丁, 于洋, 米乐, 于云, 宋力昕. 有机/无机杂化室温固化热控涂层的制备[J]. 无机材料学报, 2018, 33(8): 914-918. | 
| [5] | 范广新, 刘泽萍, 闻寅, 刘宝忠. 硅烷偶联剂表面处理对LiNi0.8Co0.15Al0.05O2结构和性能的影响[J]. 无机材料学报, 2018, 33(7): 749-755. | 
| [6] | 杨景锋, 王齐华, 王廷梅. 氧化铝气凝胶的合成与性能[J]. 无机材料学报, 2018, 33(3): 259-265. | 
| [7] | 张恒飞, 刘为, 雷姣姣, 宋华庭, 漆虹. Pd掺杂量对有机无机杂化SiO2膜H2/CO2分离性能和水热稳定性能的影响[J]. 无机材料学报, 2018, 33(12): 1316-1322. | 
| [8] | 王觅堂, 方 龙, 李 梅, 柳召刚, 胡艳宏, 张晓伟. 稀土掺杂对ZnO-B2O3-SiO2玻璃热稳定性及结构的影响[J]. 无机材料学报, 2017, 32(6): 643-648. | 
| [9] | 龙佩青, 刘希涛, 易志国. 制备工艺对(Ba0.85Ca0.15)(Ti0.9Zr0.1)O3无铅压电陶瓷结构与性能的影响[J]. 无机材料学报, 2017, 32(3): 299-304. | 
| [10] | 伍青峰, 崔亚娟, 张海龙, 周 怡, 兰 丽, 王健礼, 陈耀强. 改进共沉淀法以提高三效催化剂中铈锆复合氧化物的热稳定性[J]. 无机材料学报, 2017, 32(3): 331-336. | 
| [11] | 谢晓华, 李晓哲, 李为标, 邵光杰, 夏保佳. PET基陶瓷隔膜的制备及性能研究[J]. 无机材料学报, 2016, 31(12): 1301-1305. | 
| [12] | 李宪华, 张雷刚, 王雪雪, 于清波. PANI载的孔状g-C3N4的界面聚合法制备与光催化性能研究[J]. 无机材料学报, 2015, 30(10): 1018-1024. | 
| [13] | 陈 辰, 张海斌, 彭述明, 赵林杰, 朱建国. Ti3AlC2体材料的高温临氢行为研究[J]. 无机材料学报, 2014, 29(8): 864-868. | 
| [14] | 尹冬梅, 屠德阳, 车丙晨, 张芳芳, 林常规, 戴世勋. Sn对Ge-Se-Te玻璃结构与光学特性的影响[J]. 无机材料学报, 2014, 29(3): 279-283. | 
| [15] | 叶龙强, 张清华, 张雨露, 张欣向, 江 波. 耐摩擦和高透过SiO2/TiO2/SiO2-TiO2增透膜的设计和制备[J]. 无机材料学报, 2012, 27(8): 871-875. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||