无机材料学报 ›› 2022, Vol. 37 ›› Issue (8): 911-917.DOI: 10.15541/jim20220025
刘强1(), 王倩1,2, 陈鹏辉2,3, 李晓英2,3, 章立轩2,3, 谢腾飞2,3, 李江2,3()
收稿日期:
2022-01-17
修回日期:
2022-03-17
出版日期:
2022-08-20
网络出版日期:
2022-04-07
通讯作者:
李 江, 研究员. E-mail: lijiang@mail.sic.ac.cn作者简介:
刘 强(1964-), 男, 教授. E-mail: lq88611338@163.com
LIU Qiang1(), WANG Qian1,2, CHEN Penghui2,3, LI Xiaoying2,3, ZHANG Lixuan2,3, XIE Tengfei2,3, LI Jiang2,3()
Received:
2022-01-17
Revised:
2022-03-17
Published:
2022-08-20
Online:
2022-04-07
Contact:
LI Jiang, professor. E-mail: lijiang@mail.sic.ac.cnAbout author:
LIU Qiang (1964-), male, professor. E-mail: lq88611338@163.com
Supported by:
摘要:
彩色氧化锆陶瓷具有鲜艳色彩、高折射率、耐磨损、耐腐蚀及对人体无毒等优点, 被广泛应用于电子、装饰等领域。本研究采用共沉淀法合成了平均粒径为15.9 nm的立方相Ce:8YSZ纳米粉体。以经过800 ℃煅烧4 h的粉体为原料, 通过两步烧结技术制备了具有高光学透过率和高红色度的Ce:8YSZ透明陶瓷,并系统研究了空气预烧温度对红色Ce:8YSZ透明陶瓷微观结构、直线透过率和色度的影响。当预烧温度从1200 ℃升高到1300 ℃时, Ce:8YSZ陶瓷的平均晶粒尺寸从0.3 μm增大到2.2 μm, 同时相对密度从87.2%增加到97.1%。经过1275 ℃空气预烧2 h并结合1700 ℃热等静压烧结3 h所得的Ce:8YSZ透明陶瓷表现出最佳的光学质量和最大的红色度值, 在700 nm处的直线透过率为47.6%, 红色度为52.0。
中图分类号:
刘强, 王倩, 陈鹏辉, 李晓英, 章立轩, 谢腾飞, 李江. 两步烧结法制备红色Ce:8YSZ透明陶瓷及其性能研究[J]. 无机材料学报, 2022, 37(8): 911-917.
LIU Qiang, WANG Qian, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering[J]. Journal of Inorganic Materials, 2022, 37(8): 911-917.
Fig. 4 FESEM micrographs of the thermally etched surfaces of Ce-doped 8YSZ ceramics pre-sintered at different temperatures in air for 2 h (a) 1200 ℃; (b) 1230 ℃; (c) 1250 ℃; (d) 1275 ℃; (e) 1300 ℃
Fig. 6 (a-e) FESEM micrographs of the thermally etched surfaces of Ce-doped 8YSZ ceramics pre-sintered at 1200- 1300 ℃ for 2 h and HIP post-treatment at 1700 ℃ for 3 h; (f-i) EDS element mapping of the Ce-doped 8YSZ ceramics pre-sintered at 1275 ℃ (a) 1200 ℃; (b) 1230 ℃; (c) 1250 ℃; (d) 1275 ℃; (e) 1300 ℃
Fig. 8 (a) Photograph and (b) in-line transmittance of the Ce-doped 8YSZ ceramics (1 mm thick) pre-sintered at 1200-1300 ℃ in air for 2 h and HIP post-treatment at 1700 ℃ for 3 h under 176 MPa in Ar atmosphere
Pre-sintering temperature/℃ | Value of CIE | ||
---|---|---|---|
L* | a* | b* | |
1230 | 31.8 | 42.5 | 54.7 |
1250 | 37.4 | 48.6 | 64.3 |
1275 | 42.4 | 52.0 | 72.9 |
1300 | 37.7 | 48.9 | 64.8 |
Table 1 CIE value of Ce-doped 8YSZ ceramics pre- sintered at 1230-1300 ℃ for 2 h and HIP post-treatment at 1700 ℃ for 3 h
Pre-sintering temperature/℃ | Value of CIE | ||
---|---|---|---|
L* | a* | b* | |
1230 | 31.8 | 42.5 | 54.7 |
1250 | 37.4 | 48.6 | 64.3 |
1275 | 42.4 | 52.0 | 72.9 |
1300 | 37.7 | 48.9 | 64.8 |
[1] | ZHANG X X, ZHU D B, LIANG J S. Progress on hydrothermal stability of dental zirconia ceramics. J. Inorg. Mater., 2020, 35(7): 759-768. |
[2] |
LV H D, BAO J X, RUAN F, et al. Preparation and properties of black Ti-doped zirconia ceramics. J. Mater. Res. Technol., 2020, 9(3): 6201-6208.
DOI URL |
[3] |
SANI E, SCITI D, CAPIANI C, et al. Colored zirconia with high absorbance and solar selectivity. Scr. Mater., 2020, 186: 147-151.
DOI URL |
[4] |
LAGANOVSKA K, OLSTEINS D, SMITS K, et al. Formation of translucent nanostructured zirconia ceramics. J. Eur. Ceram. Soc., 2021, 41(13): 6641-6648.
DOI URL |
[5] |
LEI L W, FU Z Y, WANG H, et al. Transparent yttria stabilized zirconia from glycine-nitrate process by spark plasma sintering. Ceram. Int., 2012, 38(1): 23-28.
DOI URL |
[6] | IKESUE A. Processing of ceramics:breakthroughs in optical materials. Hoboken: John Wiley and Sons, 2021 : 275-348. |
[7] |
BEJUGAMA S, CHAMEETTACHAL S, PATI F, et al. In vitro cellular response and hydrothermal aging of two-step sintered Nb2O5 doped ceria stabilized zirconia ceramics. Ceram. Int., 2021, 47(2): 1594-1601.
DOI URL |
[8] |
WOOD D L, NASSAU K. Refractive index of cubic zirconia stabilized with yttria. Appl. Opt., 1982, 21(16): 2978-2981.
DOI URL |
[9] | TIAN T, XU J Y, ZHAN Z G, et al. Study on the spectral characteristics of emerald-like cubic zirconia crystal. J. Synth. Cryst., 2015, 44(3): 581-586. |
[10] |
DASHA A, KIMB B N, KLIMKEC J, et al. Transparent tetragonal-cubic zirconia composite ceramics densified by spark plasma sintering and hot isostatic pressing. J. Eur. Ceram. Soc., 2019, 39(4): 1428-1435.
DOI URL |
[11] |
ZHANG H B, KIM B N, MORITA K, et al. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J. Alloys Compd., 2010, 508(1): 196-199.
DOI URL |
[12] |
ZHANG H B, KIM B N, MORITA K, et al. Optical properties and microstructure of nanocrystalline cubic zirconia prepared by high-pressure spark plasma sintering. J. Am. Ceram. Soc., 2011, 94(9): 2981-2986.
DOI URL |
[13] | TIAN F, CHEN C, LIU Y, et al. Fabrication of Nd:YAG transparent ceramics from co-precipitated powders by vacuum pre- sintering and HIP post-treatment. Opt. Mater., 2020, 101: 109728. |
[14] |
TSUKUMA K. Transparent titania-yttria-zirconia ceramics. J. Mater. Sci. Lett., 1986, 5: 1143-1144.
DOI URL |
[15] |
TSUKUMA K, YAMASHITA I, KUSUNOSE T. Transparent 8mol% Y2O3-ZrO2 (8Y) ceramics. J. Am. Ceram. Soc., 2010, 91(3): 813-818.
DOI URL |
[16] |
PEUCHERT U, OKANO Y, MENKE Y, et al. Transparent cubic-ZrO2 ceramics for application as optical lenses. J. Eur. Ceram. Soc., 2009, 29(2): 283-291.
DOI URL |
[17] |
LIU Q, CHEN P H, JIANG N, et al. Fabrication and characterizations of 8.7mol% Y2O3-ZrO2 transparent ceramics using co-precipitated nanopowders. Scr. Mater., 2019, 171: 98-101.
DOI URL |
[18] | LUO J M, CAO Z C, DENG L P, et al. Preparation and luminescence property of Ho3+/Yb3+:8YSZ nanopowders. J. Synth. Cryst., 2017, 46(10): 1902-1906. |
[19] |
HUANG X Y, LIU Y M, LIU Y, et al. Fabrication and characterizations of Yb:YAG transparent ceramics using alcohol- water co-precipitation method. J. Inorg. Mater., 2021, 36(2): 217-224.
DOI URL |
[20] |
LI X Y, SNETKOV I L, YAKOVLEV A, et al. Fabrication and performance evaluation of novel transparent ceramics RE:Tb3Ga5O12(RE=Pr, Tm, Dy) toward magneto-optical application. J. Adv. Ceram., 2021, 10(2): 271-278.
DOI URL |
[21] |
LIU Z Y, TOCI G, PIRRI A, et al. Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. J. Adv. Ceram., 2020, 9(6): 674-682.
DOI URL |
[22] | CHEN P H, LIU Q, LI X Y, et al. Influence of terminal pH value on co-precipitated nanopowders for yttria-stabilized ZrO2 transparent ceramics. Opt. Mater., 2019, 98: 109475. |
[23] |
LV H D, BAO J X, QI S Y, et al. Optical and mechanical properties of purple zirconia ceramics. J. Asian Ceram. Soc., 2019, 7(3): 306-311.
DOI URL |
[24] |
RӦMER H, LUTHER K D, ASSMUS W. Coloured zirconia. Cryst. Res. Technol., 1994, 29(6): 787-794.
DOI URL |
[25] |
LV H D, BAO J X, CHAO L M, et al. Development mechanism of Ce-doped red zirconia ceramics prepared by a high-temperature reduction method. J. Alloys Compd., 2019, 797: 931-939.
DOI URL |
[26] |
LEE D Y, KIM D J, SONG Y S. Chromaticity, hydrothermal stability, and mechanical properties of t-ZrO2/Al2O3 composites doped with yttrium, niobium, and ferric oxides. J. Mater. Sci. Eng. A, 2000, 289(1/2): 1-7.
DOI URL |
[27] |
HOLZA L, MACIASB J, VITORINOB N, et al. Effect of Fe2O3 doping on colour and mechanical properties of Y-TZP ceramics. Ceram. Int., 2018, 44(15): 17962-17971.
DOI URL |
[28] |
JOVANÍ M, FORTUÑO-MORTE M, BELTRÁN-MIR H, et al. Environmental-friendly red-orange ceramic pigment based on Pr and Fe co-doped Y2Zr2O7. J. Eur. Ceram. Soc., 2018, 38(4): 2210-2217.
DOI URL |
[29] |
WILLEMS E, ZHANG F, VAN MEERBEEK B, et al. Iron oxide colouring of highly-translucent 3Y-TZP ceramics for dental restorations. J. Eur. Ceram. Soc., 2019, 39(2/3): 499-507.
DOI URL |
[30] |
SALEHI S, FATHI M H. Fabrication and characterization of Sol-Gel derived hydroxyapatite/zirconia composite nanopowders with various yttria contents. Ceram. Int., 2010, 36(5): 1659-1667.
DOI URL |
[31] |
SU S, LIU Q, HU Z W, et al. A simple way to prepare Co:MgAl2O4 transparent ceramics for saturable absorber. J. Alloys Compd., 2019, 797: 1288-1294.
DOI URL |
[32] | CHEN P H, LIU Q, FENG Y G, et al. Transparent Y0.16Zr0.84O1.92 ceramics sintered from co-precipitated nanopowder. Opt. Mater., 2020, 100: 109645-1-6. |
[33] |
NIKL M, LAGUTA V V, VEDDA A. Complex oxide scintillators: material defects and scintillation performance. Phys. Stat. Sol., 2008, 245(9): 1701-1722.
DOI URL |
[1] | 李悦, 张旭良, 景芳丽, 胡章贵, 吴以成. 铈掺杂硼酸钙镧晶体的生长与性能研究[J]. 无机材料学报, 2023, 38(5): 583-588. |
[2] | 李文俊, 王皓, 涂兵田, 谌强国, 郑凯平, 王为民, 傅正义. 宽光谱透过Mg0.9Al2.08O3.97N0.03透明陶瓷的制备与性能研究[J]. 无机材料学报, 2022, 37(9): 969-975. |
[3] | 荆延秋, 刘强, 苏莎, 李晓英, 刘子玉, 王静雅, 李江. 1.5 μm被动调Q可饱和吸收体用Co:MgAl 2O4透明陶瓷的制备[J]. 无机材料学报, 2021, 36(8): 877-882. |
[4] | 刘子玉, TOCI Guido, PIRRI Angela, PATRIZI Barbara, 冯亚刚, 陈肖朴, 胡殿君, 田丰, 吴乐翔, VANNINIMatteo, 李江. 固体激光用Nd:Lu2O3透明陶瓷的制备和光学性能研究[J]. 无机材料学报, 2021, 36(2): 210-216. |
[5] | 黄新友, 刘玉敏, 刘洋, 李晓英, 冯亚刚, 陈肖朴, 陈鹏辉, 刘欣, 谢腾飞, 李江. 醇水共沉淀法制备Yb:YAG透明陶瓷及其性能研究[J]. 无机材料学报, 2021, 36(2): 217-224. |
[6] | 朱丹阳, 钱康, 陈肖朴, 胡泽望, 刘欣, 李晓英, 潘裕柏, MIHÓKOVÁ Eva, NIKL Martin, 李江. 热等静压烧结制备细晶粒Ce,Y:SrHfO3闪烁陶瓷[J]. 无机材料学报, 2021, 36(10): 1118-1124. |
[7] | 韦家蓓, TOCIGuido, PIRRIAngela, PATRIZIBarbara, 冯亚刚, VANNINIMatteo, 李江. 共沉淀纳米粉体制备Yb:CaF2激光陶瓷及其性能研究[J]. 无机材料学报, 2019, 34(12): 1341-1348. |
[8] | 张金诚, 王皓, 徐鹏宇, 涂兵田, 王为民, 傅正义. ZnO·2.56Al2O3透明陶瓷凝胶注模成型与烧结制备[J]. 无机材料学报, 2019, 34(10): 1072-1076. |
[9] | 刘小元, 刘宝丹, 姜亚南, 王柯, 周洋, 杨兵, 张兴来, 姜辛. 形貌可控及光学吸收性能可调的钙钛矿型SrTiO3纳米结构的原位生长[J]. 无机材料学报, 2019, 34(1): 65-71. |
[10] | 杨锁龙, 王晓方, 蒋春丽, 赵雅文, 曾荣光, 王怀胜, 赖新春. InP量子点的掺杂及其光学性能[J]. 无机材料学报, 2016, 31(10): 1051-1057. |
[11] | 周 鼎, 施 鹰, 范灵聪, 林德宝, 孙泽清, 徐家跃. Ce, Pr离子双掺LuAG透明陶瓷制备及光学性能[J]. 无机材料学报, 2016, 31(10): 1099-1102. |
[12] | 杨雨佳, 王 晶, 何慧芬. 铽离子掺杂锆酸钡粉体制备及其光学性能研究[J]. 无机材料学报, 2016, 31(1): 27-33. |
[13] | 刘 婧, 刘 军, 李 江, 林 丽, 潘裕柏, 程晓农, 郭景坤. 球磨转速对Nd:YAG透明陶瓷的显微结构及光学性能的影响[J]. 无机材料学报, 2015, 30(6): 581-587. |
[14] | 杨 睿, 介万奇, 孙晓燕, 杨 敏, 呼 唤, 蔺 云. 温度梯度溶液法生长的Cr掺杂的ZnTe晶体的表征[J]. 无机材料学报, 2015, 30(4): 401-407. |
[15] | 向卫东, 赵斌宇, 梁晓娟, 陈兆平, 谢翠萍, 骆 乐, 张志敏, 张景峰, 钟家松. 白光LED用Ce:YAG单晶光学性能及封装工艺的研究[J]. 无机材料学报, 2014, 29(6): 614-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||