无机材料学报 ›› 2016, Vol. 31 ›› Issue (6): 588-596.DOI: 10.15541/jim20150521 CSTR: 32189.14.10.15541/jim20150521
翟丽丽1,2, 张 江1,2, 李轩科1,2, 丛 野1,2, 董志军1,2, 袁观明1,2
收稿日期:2015-10-26
修回日期:2015-12-22
出版日期:2016-06-20
网络出版日期:2016-05-19
作者简介:翟丽丽(1990–), 女, 硕士研究生. E-mail: happy123zhai@163.com
基金资助:ZHAI Li-Li1,2, ZHANG Jiang1,2, LI Xuan-Ke1,2, CONG Ye1,2, DONG Zhi-Jun1,2, YUAN Guan-Ming1,2
Received:2015-10-26
Revised:2015-12-22
Published:2016-06-20
Online:2016-05-19
About author:ZHAI Li-Li. E-mail: happy123zhai@163.com
Supported by:摘要:
以SnCl4·5H2O和尿素为原料, 嵌段聚醚F127(EO106-PO70-EO106)为模板剂, 通过水热法制备了介孔SnO2材料。XRD、TEM和BET等分析结果表明, 模板剂F127添加量对介孔SnO2的孔结构有重要影响。F127添加量增加, SnO2比表面积增大, 孔容增大, 孔径分布变宽。电化学测试结果表明, 介孔的存在不仅能为锂离子脱嵌提供通道, 而且可以缓冲SnO2的体积膨胀, 从而提高介孔SnO2负极材料的电化学性能; 当F127添加量为6.0 g时, 所制备SnO2具有124 m2/g的比表面积, 平均孔径为4.94 nm, 表现出最佳的循环性能和倍率性能, 在60 mA/g的电流密度下经30次循环后, 其可逆容量仍保持在434 mAh/g; 循环伏安测试表明部分高活性Li2O的可逆还原提供了附加的可逆容量。
中图分类号:
翟丽丽, 张 江, 李轩科, 丛 野, 董志军, 袁观明. 模板剂F127对介孔SnO2的孔结构及电化学性能的影响[J]. 无机材料学报, 2016, 31(6): 588-596.
ZHAI Li-Li, ZHANG Jiang, LI Xuan-Ke, CONG Ye, DONG Zhi-Jun, YUAN Guan-Ming. F127 Template on Pore Structure and Electrochemical Performances of Mesoporous SnO2[J]. Journal of Inorganic Materials, 2016, 31(6): 588-596.
| Sample | D(110)/nm |
|---|---|
| SnO2 | 3.98 |
| 3F-SnO2 | 4.39 |
| 4.5F-SnO2 | 4.06 |
| 6F-SnO2 | 3.84 |
| 7.5F-SnO2 | 3.66 |
| 9F-SnO2 | 3.59 |
表1 不同F127添加量制备的介孔SnO2晶粒尺寸
Table 1 Crystalline sizes of mesoporous SnO2 synthesized with different F127 additive amounts
| Sample | D(110)/nm |
|---|---|
| SnO2 | 3.98 |
| 3F-SnO2 | 4.39 |
| 4.5F-SnO2 | 4.06 |
| 6F-SnO2 | 3.84 |
| 7.5F-SnO2 | 3.66 |
| 9F-SnO2 | 3.59 |
图2 不同F127添加量制备的介孔SnO2的SEM照片
Fig. 2 SEM images of SnO2 synthesized with different F127 additive amounts. (a) SnO2; (b) 3F-SnO2; (c) 4.5F-SnO2; (d) 6F-SnO2; (e) 7.5F-SnO2; (f) 9F-SnO2
图4 不同F127添加量制备的介孔SnO2的氮气吸/脱附等温线及孔径分布图(插图)
Fig. 4 N2 adsorption/desorption isotherms and pore size distribution curves (inset) of mesoporous SnO2 synthesized with different F127 additive amounts. (a) SnO2; (b) 3F-SnO2; (c) 6F-SnO2; (d) 9F-SnO2
| Samples | BET/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm |
|---|---|---|---|
| SnO2 | 94 | 0.097 | 4.10 |
| 3F-SnO2 | 104 | 0.110 | 4.25 |
| 4.5F-SnO2 | 110 | 0.122 | 4.42 |
| 6F-SnO2 | 124 | 0.153 | 4.94 |
| 7.5F-SnO2 | 126 | 0.152 | 4.86 |
| 9F-SnO2 | 138 | 0.179 | 5.19 |
表2 不同F127添加量制备的介孔SnO2的孔结构参数
Table 2 Pore structural parameters of mesoporous SnO2 synthesized with different F127 additive amounts
| Samples | BET/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore size/nm |
|---|---|---|---|
| SnO2 | 94 | 0.097 | 4.10 |
| 3F-SnO2 | 104 | 0.110 | 4.25 |
| 4.5F-SnO2 | 110 | 0.122 | 4.42 |
| 6F-SnO2 | 124 | 0.153 | 4.94 |
| 7.5F-SnO2 | 126 | 0.152 | 4.86 |
| 9F-SnO2 | 138 | 0.179 | 5.19 |
图6 不同F127添加量制备的介孔SnO2的循环容量图和循环效率图
Fig. 6 Cycling performances and coulombic efficiency of mesoporous SnO2 synthesized with different F127 additive amounts. (a) SnO2; (b) 3F-SnO2; (c) 6F-SnO2; (d) 9F-SnO2
| [1] | DAHN J R, ZHENG T, LIU Y, et al.Mechanisms for lithium insertion in carbonaceous materials.Science, 1995, 270(5236): 590-593. |
| [2] | IDOTA Y, KUBOTA T, MATSUFUJI A, et al.Tin-based amorphous oxide: a high-capacity lithium-ion-storage material.Science, 1997, 276(5317): 1395-1397. |
| [3] | COURTNEY I A, DAHN J R.Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites.Journal of the Electrochemical Society, 1997, 144(6): 2045-2052. |
| [4] | FAN J, WANG T, YU C Z, et al.Ordered nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries.Advanced Materials, 2004, 16(16): 1432-1436. |
| [5] | WANG J Z, DU N, ZHANG H, et al.Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries.The Journal of Physical Chemistry, 2011, 115(22): 11302-11305. |
| [6] | YIN X M, LI C C, ZHANG M, et al.One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium-ion batteries.The Journal of Physical Chemistry, 2010, 114(17): 8084-8088. |
| [7] | WANG C, ZHOU Y, GE M Y, et al.Large-scale synthesis of SnO2 nanosheets with high lithium-ion storage capacity.Journal of the American Chemical Society, 2009, 132(1): 46-47. |
| [8] | ZHANG X, JIANG B, GUO J X, et al.Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycle.Journal of Power Sources, 2014, 268: 365-371. |
| [9] | SHIVA K, KIRAN M S R N, RAMAMURTY U, et al. A broad pore size distribution mesoporous SnO2 as anode for lithium-ion batteries.J. Solid State Electrochem., 2012, 16(11): 3643-3649. |
| [10] | LIU X W, ZHONG X W, YANG Z Z, et al.Gram-scale synthesis of graphene-mesoporous SnO2 composite as anode for lithium-ion batteries.Electrochimica Acta, 2015, 152(10): 178-182. |
| [11] | YANG Z L, ZHAO S J, JIANG W, et al.Carbon-supported SnO2 nanowire arrays with enhanced lithium storage properties.Electrochimica Acta, 2015, 158: 321-326. |
| [12] | WU P, DU N, ZHANG H, et al.Carbon-coated SnO2 nanotubes template-engaged synthesis and their application in lithium-ion batteries.Nanoscale, 2011, 3(2): 746-750. |
| [13] | YANG Q, HU W B.Amorphous SnO2-C composite fibers and their electrochemical performance.Journal of Inorganic Materials, 2015, 30(8): 861-888. |
| [14] | ZHANG C F, PENG X, GUO Z P, et al.Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries.Carbon, 2012, 50(5): 1897-1903. |
| [15] | YU Z J, WANG Y L, DENG H G, et al.Synthesis and electrochemical performance of SnO2/graphene anode material for lithium ion batteries.Journal of Inorganic Materials, 2013, 28(5): 515-520. |
| [16] | LI Y D, LU X, WANG H K, et al.Growth of ultrafine SnO2 nanoparticles within multiwall carbon nanotube networks: non-solution synthesis and excellent electrochemical properties as anodes for lithium ion batteries.Electrochimica Acta, 2015, 178: 778-785. |
| [17] | LIU Y F, HU Z H, XU K, et al.Surface modification and performance of activated carbon electrode material.Acta Phys. -Chim. Sin., 2008, 24(7): 1143-1148. |
| [18] | KIM H, CHO J.Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials.Journal of Materials Chemistry, 2008, 18(7): 771-775. |
| [19] | SONG H H, YANG S B, CHEN X H.The effect on high charge/discharge rate performance of the lithium ion battery.Chinese Journal of Power Sources, 2009, 33(6): 443-448. |
| [20] | WANG Y, SAKAMOTO J, KOSTOV S, et al.Structural aspects of electrochemically lithiated SnO: nuclear magnetic resonance and X-ray absorption studies.Journal of Power Sources, 2000, 89(2): 232-236. |
| [21] | LOU X W, LI C M, ARCHER L A.Designed synthesis of coaxial SnO2@carbon hollow spheres for highly reversible lithium storage.Advanced Materials, 2009, 21(24): 2536-2539. |
| [22] | ZHANG Y L, LIU Y, LIU M L.Nano-structured columnar tin oxide thin film electrode for lithium ion batteries.Chemistry of Materials, 2006, 18(19): 4643-4646. |
| [23] | WANG J H, LI B, WU H Y, et al.Synthesis of mesoporous SnO2 and its application in lithium ion battery.Acta Phys. -Chim. Sin., 2008, 24(4): 681-685. |
| [24] | LIU B, CAO M H, ZHAO X Y, et al.Facile synthesis of ultrafine carbon-coated SnO2 nanoparticles for high-performance reversible lithium storage.Journal of Power Sources, 2013, 243: 54-59. |
| [25] | ZHANG Y X, ZHANG X J.The influence of the template agent on the order mesoporous carbon channel structure.Journal of Beijing University of Chemical Technology(Natural Science), 2010, 37(5): 83-87. |
| [26] | LI Z P, ZHAO R H, GUO F, et al.Preparation and characterization of ordered mesoporous alumina with high specific surface area with F127 as template.Chemical Journal of Chinese Universities, 2008, 29(1): 13-17. |
| [27] | COURTNEY I A, MCKINNON W R, Dahn J R.On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium.Journal of the Electrochemical Society, 1999, 146(1): 59-68. |
| [1] | 谭博文, 耿双龙, 张锴, 郑百林. 硅电极组分梯度设计抑制力-化学耦合劣化[J]. 无机材料学报, 2025, 40(7): 772-780. |
| [2] | 郭子玉, 朱云洲, 王力, 陈健, 李红, 黄政仁. Zn2+催化剂对酚醛树脂/乙二醇制备多孔碳微观孔结构的影响[J]. 无机材料学报, 2025, 40(5): 466-472. |
| [3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
| [4] | 程节, 周月, 罗薪涛, 高美婷, 骆思妃, 蔡丹敏, 吴雪垠, 朱立才, 袁中直. 蛋黄壳结构FeF3·0.33H2O@N掺杂碳纳米笼正极材料的构筑及其电化学性能[J]. 无机材料学报, 2024, 39(3): 299-305. |
| [5] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
| [6] | 苏楠, 邱介山, 王治宇. 高容量氟掺杂碳包覆纳米硅负极材料: 气相氟化法制备及其储锂性能[J]. 无机材料学报, 2023, 38(8): 947-953. |
| [7] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
| [8] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. |
| [9] | 宿拿拿, 韩静茹, 郭印毫, 王晨宇, 石文华, 吴亮, 胡执一, 刘婧, 李昱, 苏宝连. 基于ZIF-8的三维网络硅碳复合材料锂离子电池性能研究[J]. 无机材料学报, 2022, 37(9): 1016-1022. |
| [10] | 王洋, 范广新, 刘培, 尹金佩, 刘宝忠, 朱林剑, 罗成果. 钾离子掺杂提高锂离子电池正极锰酸锂性能的微观机制[J]. 无机材料学报, 2022, 37(9): 1023-1029. |
| [11] | 朱河圳, 王选朋, 韩康, 杨晨, 万睿哲, 吴黎明, 麦立强. 超高镍LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2正极材料的储锂稳定性的提升机制[J]. 无机材料学报, 2022, 37(9): 1030-1036. |
| [12] | 冯锟, 朱勇, 张凯强, 陈长, 刘宇, 高彦峰. 勃姆石纳米片增强锂离子电池隔膜性能研究[J]. 无机材料学报, 2022, 37(9): 1009-1015. |
| [13] | 陈莹, 栾伟玲, 陈浩峰, 朱轩辰. 基于应力场的锂离子电池正极多尺度失效研究[J]. 无机材料学报, 2022, 37(8): 918-924. |
| [14] | 江依义, 沈旻, 宋半夏, 李南, 丁祥欢, 郭乐毅, 马国强. 双功能电解液添加剂对锂离子电池高温高电压性能的影响[J]. 无机材料学报, 2022, 37(7): 710-716. |
| [15] | 苏东良, 崔锦, 翟朋博, 郭向欣. 石榴石型Li6.4La3Zr1.4Ta0.6O12对Si/C负极表面固体电解质中间相的调控机制研究[J]. 无机材料学报, 2022, 37(7): 802-808. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||