无机材料学报 ›› 2016, Vol. 31 ›› Issue (6): 581-587.DOI: 10.15541/jim20150536 CSTR: 32189.14.10.15541/jim20150536
王超飞1, 鲁 双1, 陈慧龙1, 巩飞龙1, 龚玉印1, 李 峰1,2
收稿日期:
2015-11-02
修回日期:
2015-12-29
出版日期:
2016-06-20
网络出版日期:
2016-05-19
作者简介:
王超飞(1990–), 男, 硕士研究生. E-mail: zqwcf527@163.com
基金资助:
WANG Chao-Fei1, LU Shuang1, CHEN Hui-Long1, GONG Fei-Long1, GONG Yu-Yin1, LI Feng1,2
Received:
2015-11-02
Revised:
2015-12-29
Published:
2016-06-20
Online:
2016-05-19
About author:
WANG Chao-Fei. E-mail: zqwcf527@163.com
Supported by:
摘要:
在乙醇胺和水组成的混合溶剂中, Mn(Ac)2与氧化石墨烯一步反应得到还原石墨烯(RGO)与黑锰矿纳米颗粒(Mn3O4)组成的复合材料Mn3O4@RGO。以Mn3O4@RGO为正极, RGO为负极, 组装得到了具有优良储能性能的非对称型超级电容器Mn3O4@RGO//RGO。基于活性物质的总质量, 电容器的最大能量密度可达21.7 Wh/kg, 相应的功率密度为0.5 kW/kg; 同时, 最大功率密度为8 kW/kg时, 对应的能量密度为11.1 Wh/kg。Mn3O4@RGO//RGO还表现出良好的循环稳定性, 在经历5000次循环后, 比电容依然保持88.4%。电容器的良好储能性能可归因于在RGO表面生长的高密度Mn3O4纳米颗粒和RGO的良好导电性能。
中图分类号:
王超飞, 鲁 双, 陈慧龙, 巩飞龙, 龚玉印, 李 峰. 一步合成Mn3O4@RGO复合材料及其非对称超级电容器的应用[J]. 无机材料学报, 2016, 31(6): 581-587.
WANG Chao-Fei, LU Shuang, CHEN Hui-Long, GONG Fei-Long, GONG Yu-Yin, LI Feng. One-pot Synthesis and Application in Asymmetric Supercapacitors of Mn3O4@RGO Nanocomposites[J]. Journal of Inorganic Materials, 2016, 31(6): 581-587.
图2 (a) RGO和(b、c)Mn3O4@RGO的FESEM照片, (d)Mn3O4@RGO的XRD图谱
Fig. 2 FESEM and images of (a) RGO and (b-c) Mn3O4@RGO nanocomposites, (d) XRD pattern of Mn3O4@RGO nanocomposites
图3 (a、b) RGO和(c、d) Mn3O4@RGO的TEM 和HRTEM图片, 插图为对应的SAED照片
Fig. 3 TEM and HRTEM images of RGO (a-b) and Mn3O4@RGO nanocomposites (c,d), with inset in (d) showing the corresponding SAED pattern
图4 (a、b) Mn3O4@RGO电极和(c、d) RGO电极的CV曲线和恒流充放电曲线
Fig. 4 CV curves of Mn3O4@RGO nanocomposites (a) and RGO (c) measured in a three-electrode cell in 1 mol/L Na2SO4 electrolytes at different scan rates, and charge-discharge curves of supercapacitors constructed with Mn3O4@RGO nanocomposites (b) and RGO (d) in 1 mol/L Na2SO4 electrolytes measured at different current densities
图5 Mn3O4@RGO//RGO非对称两电极超级电容器的CV曲线(a), 恒流充放电曲线(b), 不同充放电电流密度下的质量比电容(c), 以及循环稳定性测试(d), 插图为前20次的循环测试曲线
Fig. 5 (a) Cyclic voltammograms at different scan rates, (b) charge/discharge curves and (c) specific capacitances at different current densities for Mn3O4@RGO//RGO asymmetric supercapacitor in 1 mol/L Na2SO4 electrolytes, and (d) charge-discharge cycling test of Mn3O4@RGO//RGO asymmetric supercapacitor at current density of 4 A/g. Inset shows the galvanostatic charge-discharge cyclic curves of the first twenty cycles at 4 A/g
[1] | YANG F, ZHAO M, SUN Q, et al.A novel hydrothermal synthesis and characterisation of porous Mn3O4 for supercapacitors with high rate capability.RSC Adv., 2015, 5(13): 9843-9847. |
[2] | RAJ B G S, RAMPRASAD R N R, ASIRI A M, et al. Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochimica Acta, 2015, 156(1): 127-137. |
[3] | SIMON P, GOGOTSI Y.Materials for electrochemical capacitors .Nat.Mater., 2008, 7(11): 845-854. |
[4] | ZHAO X, S NCHEZ B M, DOBSON P J, et al. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices.Nanoscale, 2011, 3(3): 839-855. |
[5] | EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 2012, 335(6074): 1326-1330. |
[6] | JING M, WANG J, HOU H,et al. Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries. J. Mater. Chem. A, 2015, 3(32): 16824-16830. |
[7] | XIAO Y, CAO Y, GONG Y, et al.Electrolyte and composition effects on the performances of asymmetric supercapacitors constructed with Mn3O4 nanoparticles-graphene nanocomposites . Journal of Power Sources, 2014, 246(8): 926-933. |
[8] | MEI J, ZHANG L.Novel MnOOH-graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors.Journal of Solid State Chemistry, 2015, 221: 178-183. |
[9] | CAO Y, XIAO Y, GONG Y, et al.One-pot synthesis of MnOOH nanorods on graphenefor asymmetric supercapacitors. Electrochem. Acta, 2014, 127: 200-207. |
[10] | FAN Z, YAN J, WEI T, et al.Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater., 2011, 21(12): 2366-2375. |
[11] | QU Q, SHI Y, TIAN S, et al.A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2. J. Power Sources, 2009, 194(2): 1222-1225. |
[12] | GONG Y, GONG F, WANG C, et al.Porous and single crystalline Co3O4 nanospheres for pseudocapacitors with enhanced performance.RSC Adv., 2015, 5: 27266-27272. |
[13] | KHOMENKO V, RAYMUNDO-PINERO E, FRACKOWIAK E, et al.High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl.Phys.A, 2006, 82(4): 567-573. |
[14] | YU C, MASARAPU C, RONG J, et al.Stretchable supercapacitors based on buckled single-walled carbon‐nanotube macrofilms.Adv.Mater., 2009, 21(47): 4793-4797. |
[15] | LEI Z, ZHANG J, ZHAO X.Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem., 2012, 22(1): 153-160. |
[16] | LEE J W, HALL A S, KIM J D, et al.A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater., 2012, 24(6): 1158-1164. |
[17] | CHEN B, RAO G, WANG S, et al.Facile synthesis and characterization of Mn3O4 nanoparticles by auto-combustion method.Materials Letters, 2015, 154: 160-162. |
[18] | LIU Y, WANG W, WANG Y, et al.Binder-free three-dimensional porous Mn3O4 nanorods/reduced graphene oxide paper-like electrodes for electrochemical energy storage. RSC.Advances, 2014, 4(31): 16374. |
[19] | QIAN W, CHEN Z, COTTINGHAM S, et al.Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor. Green Chem., 2012, 14(2): 371-377. |
[20] | XIA H, MENG Y S, LI X, et al.Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors.J. Mater. Chem., 2011, 21(39): 15521-15526. |
[21] | WANG D, LI Y, WANG Q, et al.Facile synthesis of porous Mn3O4 nanocrystal-graphene nanocomposites for electrochemical supercapacitors.Eur. J. Inorg. Chem., 2012, 2012(4): 628-635. |
[22] | SHE X, ZHANG X, LIU J, et al.Microwave-assisted synthesis of Mn3O4 nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors .Materials Research Bulletin, 2015, 70(2): 945-950. |
[23] | WANG H, CUI L F, YANG Y, et al.Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.J. Am. Chem. Soc., 2010, 132(40): 13978-13980. |
[24] | HUMMERS W S, OFFEMAN R E.Preparation of graphitic oxide.J. Am. Chem. Soc., 1958, 80: 1339-1340. |
[25] | XIAO Y, LIU S, LI F, et al.3D Hierarchical Co3O4 twin‐spheres with an urchin‐like structure: large‐scale synthesis, multistep‐splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater., 2012, 22(19): 4052-4059. |
[26] | PARK S, AN J, JUNG I, et al.Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents.Nano Lett., 2009, 9(4): 1593-1597. |
[27] | PHAM V H, CUONG T V, HUR S H, et al.Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone.J. Mater. Chem., 2011, 21(10): 3371-3377. |
[28] | BOSE V C, BIJU V.Structure, cation valence states and electrochemical properties of nanostructured Mn3O4.Materials Science in Semiconductor Processing, 2015, 35(7): 1-9. |
[29] | LI Y, LI X M.Facile treatment of wastewater produced in Hummer's method to prepare Mn3O4 nanoparticles and study their electrochemical performance in an asymmetric supercapacitor. RSC Adv., 2013, 3(7): 2398-2403. |
[30] | RAKHI R B, CHEN W, CHA D, et al.High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J. Mater. Chem., 2011, 21(40): 16197-16204. |
[31] | HU C C, TSOU T W.Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition.Electrochem. Commun., 2002, 4(2): 105-109. |
[32] | KHOMENKO V, RAYMUNDO-PI ERO E, B GUIN F. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J. Power Sources, 2010, 195(13): 4234-4241. |
[33] | XIAO Y, ZHANG A, LIUA S, et al.Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. J. Power Sources, 2012, 219(12): 140-146. |
[34] | YAN J, FAN Z, SUN W, et al.Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density . Adv. Funct. Mater., 2012, 22(12): 2632-2641. |
[35] | LIU C L, CHANG K H, HU C C, et al.Microwave-assisted hydrothermal synthesis of Mn3O4 reduced graphene oxide composites for high power supercapacitors .J. Power Sources, 2012, 217(11): 184-192. |
[36] | ZHU Y, MURALI S, STOLLER M D, et al.Carbon-based supercapacitors produced by activation of graphene.Science, 2011, 332(6037): 1537-1541. |
[37] | DELL R.Batteries: fifty years of materials development.Solid State Ionics, 2000, 134(1): 139-158. |
[38] | WANG H, DAI H.Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev., 2013, 42(7): 3088-3113. |
[1] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[2] | 何思哲, 王俊舟, 张勇, 费嘉维, 吴爱民, 陈意峰, 李强, 周晟, 黄昊. 高频低损耗的Fe/亚微米FeNi软磁复合材料[J]. 无机材料学报, 2024, 39(8): 871-878. |
[3] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[4] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[5] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[6] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[7] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[8] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[9] | 李广宇, 岳一凡, 王波, 张程煜, 索涛, 李玉龙. 2D-SiC/SiC复合材料的弹丸冲击损伤及冲击后拉伸性能[J]. 无机材料学报, 2024, 39(5): 494-500. |
[10] | 杨恩东, 李宝乐, 张珂, 谭鲁, 娄永兵. ZnCo2O4-ZnO@C@CoS核壳复合材料的制备及其在超级电容器中的应用[J]. 无机材料学报, 2024, 39(5): 485-493. |
[11] | 薛轶凡, 李玮洁, 张中伟, 庞旭, 刘愚. 碳纤维布表面PyC界面相微观结构及均匀性的工艺调控[J]. 无机材料学报, 2024, 39(4): 399-408. |
[12] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[13] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[14] | 马永杰, 刘永胜, 关康, 曾庆丰. CH4+C2H5OH+Ar体系热解的气相动力学研究[J]. 无机材料学报, 2024, 39(11): 1235-1244. |
[15] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||