[1] |
GOODENOUGH J B, PARK K S . The Li-ion rechargeable battery: a perspective.[J]. Am. Chem. Soc., 2013,135(4):1167-1176.
|
[2] |
TAN Y, XUE B . Research progress on lithium titanate as anode material in lithium-ion battery.[J]. Inorg. Mater., 2018,33(5):475-482.
|
[3] |
LUO W, CHEN X, XIA Y , et al. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater., 2017, 7(24): 1701083-1-28.
|
[4] |
XIAO Q Z, FAN Y, WANG X H , et al. A multilayer Si/CNT coaxial nano fiber LiB anode with a high areal capacity. Energy Environ. Sci., 2014,7(2):655-661.
|
[5] |
HUANG S, FAN F, LI J , et al. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater., 2013,61(12):4354-4364.
|
[6] |
LI J, DAHN J R . An in situ X-ray diffraction study of the reaction of Li with crystalline Si.[J]. Electrochem. Soc., 2007,154(3):A156-A161.
|
[7] |
WANG F, WU L J, KEY B , et al. Electrochemical reaction of lithium with nanostructure silicon anodes: a study by in-situ synchrotron X-ray diffraction and electron energy-loss spectroscopy. Adv. Energy Mater., 2013,3(10):1324-1331.
|
[8] |
OBROVAC M N, KRAUSE L J . Reversible cycling of crystalline silicon powder.[J]. Electrochem. Soc., 2007,154(2):A103-A108.
|
[9] |
DING N, XU J, YAO Y X , et al. Improvement of cyclability of Si as anode for Li-ion batteries.[J]. Power Sources, 2009,192(2):644-651.
|
[10] |
SETHURAMAN V A, CHON M J, SHIMSHAK M , et al. In situ, measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation.[J]. Power Sources, 2012,195(15):5062-5066.
|
[11] |
NADIMPALLI S P V, SETHURAMAN V A, BUCCI G , et al. On plastic deformation and fracture in Si films during electrochemical lithiation/delithiation cycling.[J]. Electrochem. Soc., 2013,160(10):A1885-A1893.
|
[12] |
GHASSEMI H, MING A, CHEN N , et al. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. ACS Nano, 2011,5(10):7805-7811.
|
[13] |
LIANG B, LIU Y, XU Y . Silicon-based materials as high capacity anodes for next generation lithium ion batteries.[J]. Power Sources, 2014,267:469-490.
|
[14] |
WEN Z S, WANG K, XIE J Y . Interface formed on high capacity silicon anode for lithium ion batteries.[J]. Inorg. Mater., 2007,22(3):437-441.
|
[15] |
CHAN C K, RUFFO R, HONG S , et al. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes.[J]. Power Sources, 2009,189(2):1132-1140.
|
[16] |
KEY B, BHATTACHARYYA R, MORCRETTE M , et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries.[J]. Am. Chem. Soc., 2009,131(26):9239-9249.
|
[17] |
JI H R, KIM J W, SUNG Y E , et al. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett., 2004,7(10):A306-A309.
|
[18] |
HONG L, HUANG X, CHEN L , et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics, 2000,135(1):181-191.
|
[19] |
LIANG J W, LI X N, ZHU Y C , et al. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res., 2015,8(5):1497-1504.
|
[20] |
KIM W S, CHOI J, HONG S H . Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Lett., 2016,9(7):2174-2181.
|
[21] |
ZHOU Y N, XUE M Z, FU Z W . Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries.[J]. Power Sources, 2013,234(21):310-332.
|
[22] |
DATTA M K, MARANCHI J, CHUNG S J , et al. Amorphous silicon- carbon based nano-scale thin film anode materials for lithium ion batteries. Electrochim. Acta, 2011,56(13):4717-4723.
|
[23] |
CHENG H, XIAO R, BIAN H , et al. Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Mater. Chem. Phys., 2014,144(1/2):25-30.
|
[24] |
TONG Y, XU Z, LIU C , et al. Magnetic sputtered amorphous Si/C multilayer thin films as anode materials for lithium ion batteries.[J]. Power Sources, 2014,247(2):78-83.
|
[25] |
LIU N, LU Z, ZHAO J , et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol., 2014,9(3):187-192.
|
[26] |
XIE J, TONG L, SU L , et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance.[J]. Power Sources, 2017,342:529-536.
|
[27] |
BANG B M, LEE J I, KIM H , et al. High-performance macro porous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater., 2012,2(7):878-883.
|
[28] |
GE M, LU Y, ERCIUS P , et al. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett., 2014,14(1):261-268.
|
[29] |
GE M, RONG J, FANG X , et al. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res., 2013,6:174-181.
|
[30] |
TIAN H, TAN X, XIN F , et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy, 2015,11:490-499.
|
[31] |
LIU N, WU H, MCDOWELL M T , et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett., 2012,12(6):3315-3321.
|
[32] |
KIM H, HAN B, CHOO J , et al. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed., 2008,47(52):10151-10154.
|
[33] |
JIANG H, ZHOU X, LIU G , et al. Free-standing Si/graphene paper using Si nanoparticles synthesized by acid-etching Al-Si alloy powder for high-stability Li-ion battery anodes. Electrochim. Acta, 2016,188:777-784.
|
[34] |
WRODNIGG G H, WRODNIGG T M, BESENHARD J O , et al. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem. Commun., 1999,1(3/4):148-150.
|
[35] |
LI M, HOU X, SHA Y , et al. Facile spray-drying/pyrolysis synjournal of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries.[J]. Power Sources, 2014,248(2):721-728.
|
[36] |
PAN Q, ZUO P, LOU S , et al. Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries.[J]. Alloys Compd., 2017,723:434-440.
|
[37] |
ZUO P, YIN G, MA Y , et al. Electrochemical stability of silicon/ carbon composite anode for lithium ion batteries. Electrochim. Acta, 2007,52(15):4878-4883.
|
[38] |
LI X, GU M, HU S , et al. Mesoporous silicon sponge as an anti- pulverization structure for high-performance lithium-ion battery anodes. Nature Commun., 2014, 5(5): 4105-1-7.
|
[39] |
KIM J S, HALIM M, BYUN D , et al. Amorphous carbon-coated prickle-like silicon of micro and nano hybrid anode materials for lithium-ion batteries. Solid State Ionics, 2014,260:36-42.
|
[40] |
MIN K K, BO Y J, JIN S L , et al. Microstructures and electrochemical performances of nano-sized SiOx (1.18≤ x ≤1.83) as an anode material for a lithium(Li)-ion battery.[J]. Power Sources, 2013,244:115-121.
|
[41] |
TAKEZAWA H, IWAMOTO K, ITO S , et al. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries.[J]. Power Sources, 2013,244:149-157.
|
[42] |
SCHULMEISTER K, MADER W . TEM investigation on the structure of amorphous silicon monoxide. J. Non-Cryst. Solids, 2003,320(1):143-150.
|
[43] |
HOHL A, WIEDER T, AKEN P A V , et al. An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). J. Non-Cryst. Solids, 2003,320(1):255-280.
|
[44] |
LÜ P P, ZHAO H L, WANG J , et al. Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries.[J]. Power Sources, 2013,237(259):291-294.
|
[45] |
LIU X, ZHAO H L, JIE J Y , et al. SiOx(0<x≤2) based anode materials for lithium-ion batteries. Prog. Chem., 2015,27(4):336-348.
|
[46] |
PHILIPPE B, DEDRYVÈRE R, ALLOUCHE J , et al. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem. Mater., 2017,24(24):1107-1115.
|
[47] |
PARK C M, CHOI W, HWA Y , et al. Characterizations and electrochemical behaviors of disproportionate SiO and its composite for rechargeable Li-ion batteries.[J]. Mater. Chem., 2010,20(23):4854-4860.
|
[48] |
MORITA T, TAKAMI N . Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries.[J]. Electrochem. Soc., 2006,153(2):A425-A430.
|
[49] |
YANG X L, ZHANG P C, WEN Z Y , et al. High performance silicon/carbon composite prepared by in situ carbon-thermal reduction for lithium ion batteries.[J]. Alloys Compd., 2010,496(1):403-406.
|
[50] |
SEONG I W, KIM K T, YOON W Y , et al. Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell.[J]. Power Sources, 2009,189(1):511-514.
|
[51] |
KIM H J, CHOI S, LEE S J , et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett., 2016,16(1):282-288.
|
[52] |
XING A, ZHANG J, BAO Z , et al. A magnesiothermic reaction process for the scalable production of mesoporous silicon for rechargeable lithium batteries. Chem. Commun., 2013,49(60):6743-6745.
|
[53] |
YU B C, HWA Y, KIM J H , et al. A new approach to synthesis of porous SiOx, anode for Li-ion batteries via chemical etching of Si crystallites. Electrochim. Acta, 2014,117(4):426-430.
|
[54] |
FENG X J, YANG J, LU Q W , et al. Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys. Chem. Chem. Phys., 2013,15(34):14420-144206.
|
[55] |
YANG T, XIAO L I, TIAN X D , et al. Preparation and electrochemical performance of Si@C/SiOx as anode material for lithium-ion batteries.[J]. Inorg. Mater., 2017,32(7):699-704.
|
[56] |
LIU Y H, OKANO M, MUKAI T , et al. Improvement of thermal stability and safety of lithium ion battery using SiO anode material.[J]. Power Sources, 2016,304:9-14.
|
[57] |
MIYUKI T, OKUYAMA Y, SAKAMOTO T , et al. Characterization of heat treated SiO powder and development of a LiFePO4/ SiO lithium ion battery with high-rate capability and thermo stability. Electrochemistry, 2012,80(6):401-404.
|
[58] |
MASAYUKI Y, KAZUTAKA U, ATSUSHI U . Performance of the “SiO”-carbon composite-negative electrodes for high-capacity lithium-ion batteries; prototype 14500 batteries.[J]. Power Sources, 2013,225:221-225.
|
[59] |
LIU X . Facile synthesis and electrochemical performance of hollow SiO@void@C composite as anode material for lithium-ion batteries. Chin. Batt. Indust., 2017,21(6):3-9.
|
[60] |
LIU W R, YEN Y C, WU H C , et al. Nano-porous SiO/carbon composite anode for lithium-ion batteries.[J]. Appl. Electrochem., 2009,39(9):1643-1649.
|
[61] |
CHOI I, MIN J L, OH S M , et al. Fading mechanisms of carbon- coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: dynamics and component analysis by TEM. Electrochim. Acta, 2012,85(1):369-376.
|
[62] |
SHI C C, YAN X L, ZHANG L L , et al. High-performance SiO/C/G composite anode for lithium ion batteries.[J]. Inorg. Mater., 2013,28(9):943-948.
|