[1] |
XIANG X D, SUN X, BRICEÑO G, et al. A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738.
|
[2] |
ZHU J, HUANG H Y, XIE J X.Recent progress and new ideas for accelerating research in rare earth steel. Journal of Iron and Steel Research, 2017, 29(7): 513-529.
|
[3] |
RAMAKRISHNA S, ZHANG T, LU W, et al.Materials informatics. Journal of Intelligent Manufacturing, 2018(5): 1-20.
|
[4] |
LIU Z, LI Y, SHI D, et al.The development of cladding materials for the accident tolerant fuel system from the Materials Genome Initiative. Scripta Materialia, 2018, 143: 129-136.
|
[5] |
LIN HAI Z J L Y. The development of material genome technology in the field of new energy materials. Energy Storage Science and Technology, 2017, 6(5): 990.
|
[6] |
WHITE A A.Big data are shaping the future of materials science. Mrs Bulletin, 2013, 38(8): 594-595.
|
[7] |
WARD L, AGRAWAL A, CHOUDHARY A, et al. A general- purpose machine learning framework for predicting properties of inorganic materials. npj Computational Materials, 2016, 2: 16028-1-7.
|
[8] |
MOUNET N, GIBERTINI M, SCHWALLER P, et al.Two- dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nature Nanotechnology, 2018, 13(3): 246-252.
|
[9] |
XU S, LI X, ZHAO Y, et al.Two-dimensional semiconducting boron monolayers. Journal of the American Chemical Society, 2017, 139(48): 17233-17236.
|
[10] |
TAN T L, JIN H M, SULLIVAN M B, et al.High-throughput survey of ordering configurations in MXene alloys across compositions and temperatures. ACS Nano, 2017, 11(5): 4407-4418.
|
[11] |
ZHOU J, LIN J, HUANG X, et al.A library of atomically thin metal chalcogenides. Nature, 2018, 556(7701): 355.
|
[12] |
LAWSON C L, HANSON R J, KINCAID D R, et al.Basic linear algebra subprograms for Fortran usage. ACM Transactions on Mathematical Software (TOMS), 1979, 5(3): 308-323.
|
[13] |
ANDERSON E, BAI Z, BISCHOF C, et al.LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA. Society for Industrial and Applied Mathematics, 1999.
|
[14] |
SANDERSON C, CURTIN R.Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software, 2016.
|
[15] |
INTEL. Intel® Math Kernel Library Developer Reference, 2017.
|
[16] |
DEMMEL J W, HEATH M T, VAN DER VORST H A. Parallel numerical linear algebra. Acta Numerica, 1993, 2: 111-197.
|
[17] |
KETTNER L, N A HER S, GOODMAN J E, et al. Two Computational Geometry Libraries: LEDA and CGAL. Handbook of Discrete and Computational Geometry, Chapman & Hall/CRC, 2004: 1435-1463.
|
[18] |
PULLI K, BAKSHEEV A, KORNYAKOV K, et al.Real time computer vision with OpenCV. Queue, 2012, 10(4): 40.
|
[19] |
CHAKRABORTI N.Genetic algorithms in materials design and processing. International Materials Reviews, 2004, 49(3/4): 246-260.
|
[20] |
PASZKOWICZ W.Genetic algorithms, a nature-inspired tool: survey of applications in materials science and related fields. Materials and Manufacturing Processes, 2009, 24(2): 174-197.
|
[21] |
HKDH B.Neural networks in materials science. ISIJ international, 1999, 39(10): 966-979.
|
[22] |
BHADESHIA H.Neural networks and information in materials science. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2009, 1(5): 296-305.
|
[23] |
BHADESHIA H, DIMITRIU R C, FORSIK S, et al.Performance of neural networks in materials science. Materials Science and Technology. 2009, 25(4): 504-510.
|
[24] |
ZHANG Y M, YANG S, EVANS J.Revisiting Hume-Rothery's rules with artificial neural networks. Acta Materialia, 2008, 56(5): 1094-1105.
|
[25] |
ZHANG Y M, EVANS J, YANG S F.Detection of material property errors in handbooks and databases using artificial neural networks with hidden correlations. Philosophical Magazine, 2010, 90(33): 4453-4474.
|
[26] |
ZHANG Y, EVANS J R, YANG S.Corrected values for boiling points and enthalpies of vaporization of elements in handbooks. Journal of Chemical and Engineering Data, 2011, 56(2): 328-337.
|
[27] |
ZHANG Y M, UBIC R, XUE D F, et al.Predicting the structural stability and formability of ABO3-type perovskite compounds using artificial neural networks. Materials Focus, 2012, 1(1): 57-64.
|
[28] |
NADEAU R, CLOUTIER E, GUAY J.New evidence about the existence of a bandwagon effect in the opinion formation process. International Political Science Review, 1993, 14(2): 203-213.
|
[29] |
EARMAN J, MOSTERIN J.A critical look at inflationary cosmology. Philosophy of Science, 1999, 66(1): 1-49.
|
[30] |
TRIMBLE V.Existence and nature of dark matter in the universe. Annual Review of Astronomy & Astrophysics, 1987, 25(1): 425-472.
|
[31] |
EINSTEIN A, PODOLSKY B, ROSEN N.Can quantum- mechanical description of physical reality be considered complete? Phys. Rev., 1935, 47: 777-780.
|
[32] |
SHANNON C E.A mathematical theory of communication. The Bell System Technical Journal, 1948, 27(3): 379-423.
|
[33] |
YANG X.A New Metaheuristic Bat-inspired Algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, 2010: 65-74.
|
[34] |
KHAN K, SAHAI A.A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-learning context. International Journal of Intelligent Systems and Applications, 2012, 4(7): 23.
|
[35] |
BEKDA C S G, NIGDELI S M, YANG X. A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Engineering Structures, 2018, 159: 89-98.
|
[36] |
KHACHATURYAN A, SEMENOVSKAYA S, VAINSTEIN B.Statistical-thermodynamic approach to determination of structure amplitude phases. Sov. Phys. Crystallography, 1979, 24(5): 519-524.
|
[37] |
KHACHATURYAN A, SEMENOVSOVSKAYA S, VAINSHTEIN B.The thermodynamic approach to the structure analysis of crystals. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1981, 37(5): 742-754.
|
[38] |
KIRKPATRICK S, GELATT C D, VECCHI M P.Optimization by simulated annealing. Science, 1983, 220(4598): 671-680.
|
[39] |
ANDERSON H L, METROPOLIS. Monte Carlo and the Maniac. Los alamos Science, 1986, 14(14): 96-108.
|
[40] |
BABAI L A S O. Monte-Carlo Algorithms in Graph Isomorphism Testing. Université tde Montréal Technical Report, DMS, 1979.
|
[41] |
LEVIN L A.The tale of one-way functions. Problems of Information Transmission, 2003, 39(1): 92-103.
|
[42] |
GRUNDY D.Concepts and Calculation in Cryptography. Citeseer, 2008.
|
[43] |
QUINLAN J R.Induction of decision trees. Machine Learning, 1986, 1(1): 81-106.
|
[44] |
QUINLAN J R.C4.5: Programs for Machine Learning. Elsevier, 2014.
|
[45] |
COULOM R E M. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Springer, 2006: 72-83.
|
[46] |
KOCSIS L, SZEPESV A RI C. Bandit Based Monte-Carlo Planning. Springer, 2006: 282-293.
|
[47] |
SILVER D, HUANG A, MADDISON C J, et al.Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587): 484-489.
|
[48] |
SILVER D, SCHRITTWIESER J, SIMONYAN K, et al.Mastering the game of go without human knowledge. Nature, 2017, 550(7676): 354.
|
[49] |
LIU Y H, ZHANG W, FAN L.Ecological Pyramid Particle Swarm Optimization. Computer Science, 2017, 44(10): 237-244.
|
[50] |
RAO R V, SAVSANI V J, VAKHARIA D P.Teaching- learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 2011, 43(3): 303-315.
|
[51] |
RAO R V, SAVSANI V J, VAKHARIA D P.Teaching- learning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, 2012, 183(1): 1-15.
|
[52] |
TUO S, YONG L, DENG F.Survey of teaching-learning-based optimization algorithms. Application Research of Computers, 2013, 30(7): 1933-1938.
|
[53] |
BI X, WANG J.Teaching-learning-based optimization algorithm with hybrid learning strategy. Journal of Zhejiang University (Engineering Science), 2017, 51(5): 1024-1031.
|
[54] |
ZHANG J, LIU K, TAN Y, et al.Random Black Hole Particle Swarm Optimization and Its Application. IEEE, 2008: 359-365.
|
[55] |
HATAMLOU A.Black hole: a new heuristic optimization approach for data clustering. Information Sciences, 2013, 222: 175-184.
|
[56] |
WARNANA D D, OTHERS. Black hole algorithm for determining model parameter in self-potential data. Journal of Applied Geophysics, 2018, 148: 189-200.
|
[57] |
MA L, ZHU Y, LIU Y, et al.A novel bionic algorithm inspired by plant root foraging behaviors. Applied Soft Computing, 2015, 37: 95-113.
|
[58] |
DAN S.Biogeography-based optimization. IEEE Transactions on Evolutionary Computation. 2008, 12(6): 702-713.
|
[59] |
WESCHE T, GOERTLER C, HUBERT W.Modified habitat suitability index model for brown trout in Southeastern Wyoming. North American Journal of Fisheries Management, 1987, 7(2): 232-237.
|
[60] |
WANG C, WANG N, DUAN X, et al.Survey of Biogeography- based Optimization. Computer Science, 2010, 37(7): 34-38.
|
[61] |
MA H, SIMON D, SIARRY P, et al.Biogeography-based optimization: a 10-year review. IEEE Transactions on Emerging Topics in Computational Intelligence, 2017, 1(5): 391-407.
|
[62] |
BENIOFF P.The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 1980, 22(5): 563-591.
|
[63] |
FEYNMAN R P.Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21(6/7): 467-488.
|
[64] |
DEUTSCH D.Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 1985, 400(1818): 97-117.
|
[65] |
JOHNSON M W, AMIN M H, GILDERT S, et al.Quantum annealing with manufactured spins. Nature, 2011, 473(7346): 194.
|
[66] |
VENTURELLI D, MANDRA S, KNYSH S, et al.Quantum optimization of fully connected spin glasses. Physical Review X, 2015, 5(3): 31040.
|
[67] |
BUNYK P I, HOSKINSON E M, JOHNSON M W, et al.Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity, 2014, 24(4): 1-10.
|
[68] |
WANG H, HE Y, LI Y H, et al.High-efficiency multiphoton boson sampling. Nature Photonics, 2017, 11(6): 361-365.
|
[69] |
LIANG Q Y, VENKATRAMANI A V, CANTU S H, et al.Observation of three-photon bound states in a quantum nonlinear medium. Science, 2018, 359(6377): 783.
|
[70] |
GOOGLE R.A Preview of Bristlecone, Google's New Quantum Processor.
|
[71] |
BECKMAN D, CHARI A N, DEVABHAKTUNI S, et al.Efficient networks for quantum factoring. Physical Review A, 1996, 54(2): 1034-1063.
|
[72] |
GROVER L K.A Fast Quantum Mechanical Algorithm for Database Search. STOC’96 Proceedings of the twenty-annaal ACM Symposium on Theory of Computing, 1996: 212-219.
|
[73] |
GROVER L K.From Schrödinger's equation to the quantum search algorithm. Pramana, 2001, 56(2/3): 333-348.
|
[74] |
GROVER L K.Quantum computing. Sciences, 1999, 39(4): 24-30.
|
[75] |
AKL M N S G. Quantum Computation and Quantum Information. Cambridge University Press, 2000: 558-559.
|
[76] |
SIMON D R.On the Power of Quantum Computation. Society for Industrial and Applied Mathematics, 1997: 1759-1768.
|
[77] |
PASCAL KOIRAN V N, PORTIER N. A quantum lower bound for the query complexity of Simon's problem. Lecture Notes in Computer Science, 2005, 3580(1): 1287-1298.
|
[78] |
JOZSA R.Quantum factoring, discrete logarithms, and the hidden subgroup problem. Computing in Science & Engineering, 2000, 3(2): 34-43.
|
[79] |
SHOR P W.Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 1999: 303-332.
|
[80] |
BUHLER J P, JR H W L, POMERANCE C. Factoring integers with the number field sieve. OAI, 1993, 5(3): 231-253.
|
[81] |
LENSTRA A K, JR H W L. The Development of the Number Field Sieve. Springer-Verlag, 1993: 564-572.
|
[82] |
MONTANARO A. Quantum algorithms: an overview. npj Quantum Information, 2016, 2: 15023-1-17.
|
[83] |
GROVER L K.Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325-328.
|
[84] |
BOYER M, BRASSARD G, H YER P, et al. Tight Bounds on Quantum Searching. Wiley‐VCH Verlag GmbH & Co. KGaA, 1998: 493-505.
|
[85] |
AMBAINIS A, CHILDS A M, REICHARDT B W, et al.Any AND-OR Formula of Size N can be Evaluated in time N1/2 + o(1) on a Quantum Computer. 2007: 363-372.
|
[86] |
SUN X, YAO A C, ZHANG S.Graph Properties and Circular Functions: How Low Can Quantum Query Complexity Go? 2004: 286-293.
|
[87] |
BRASSARD G, HØYER P, MOSCA M, et al. Quantum amplitude amplification and estimation. Quantum Computation & Information. 2002, 5494: 53-74.
|
[88] |
SCHÖNING U. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems. 1999: 410.
|
[89] |
HARROW A W, HASSIDIM A, LLOYD S.Quantum algorithm for linear systems of equations. Physical Review Letters, 2009, 103(15): 150502.
|
[90] |
FARHI E, GOLDSTONE J, GUTMANN S, et al.Quantum Computation by Adiabatic Evolution. Quantum Physics, arxiv: quant-ph/0001106.
|
[91] |
SUN X.A survey on quantum computing. Scientia Sinica Informationis, 2016, 46(8): 982.
|
[92] |
WITTEK P.Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press, 2014.
|
[93] |
NARAYANAN A, MOORE M.Quantum-inspired Genetic Algorithms. 1996: 61-66.
|
[94] |
HAN K H, KIM J H.Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580-593.
|
[95] |
YANG J, ZHUANG Z, SHI L.Multi-universe parallel quantum genetic algorithm. Acta Electronica Sinica, 2004, 32(6): 923-928.
|
[96] |
CHEN H, ZHANG J, ZHANG C.Chaos Updating Rotated Gates Quantum-inspired Genetic Algorithm. 2004: 1108-1112.
|
[97] |
WANG L, TANG F, WU H.Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation. Applied Mathematics and Computation, 2005, 171(2): 1141-1156.
|
[98] |
WANG L.Advances in quantum-inspired evolutionary algorithms. Control and Decision, 2008, 23(12): 1321-1326.
|
[99] |
PYLLKKÄNEN P, PYLLKKÖ P. New Directions in Cognitive Science. Creating Consilience: Integrating the Sciences & the Humanities. 1995.
|
[100] |
KAK S.On Quantum Neural Computing. Elsevier Science Inc., 1995: 143-160.
|
[101] |
KAK S C.The Three Languages Of The Brain: Quantum, Reorganizational, and Associative. 1996: 185-219.
|
[102] |
GAUTAM A, KAK S.Symbols, meaning, and origins of mind. Biosemiotics, 2013, 6(3): 301-310.
|
[103] |
DA SILVA A J E, LUDERMIR T B, DE OLIVEIRA W R. Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Networks, 2016, 76: 55-64.
|
[104] |
PANELLA M, MARTINELLI G.Neural networks with quantum architecture and quantum learning. International Journal of Circuit Theory & Applications, 2011, 39(1): 61-77.
|
[105] |
SCHULD M, SINAYSKIY I, PETRUCCIONE F.The quest for a Quantum Neural Network. Quantum Information Processing, 2014, 13(11): 2567-2586.
|
[106] |
PATEL O, TIWARI A, PATEL V, et al.Quantum Based Neural Network Classifier and Its Application for Firewall to Detect Malicious Web Request. 2015: 67-74.
|
[107] |
LI J.Quantum-inspired neural networks with application. Open Journal of Applied Sciences, 2015, 5(6): 233-239.
|
[108] |
ALTAISKY M V, KAPUTKINA N E, KRYLOV V A.Quantum neural networks: current status and prospects for development. Physics of Particles & Nuclei. 2014, 45(6): 1013-1032.
|
[109] |
FANG W, SUN J, XIE Z, et al.Convergence analysis of quantum- behaved particle swarm optimization algorithm and study on its control parameter. Acta Physica Sinica, 2009, 6(59): 3686-3694.
|
[110] |
MANJU A, NIGAM M J.Applications of quantum inspired computational intelligence: a survey. Artificial Intelligence Review, 2014, 42(1): 79-156.
|
[111] |
HOOFT G T.The cellular automaton interpretation of quantum mechanics. Physics Today, 2017, 70(7): 60.
|
[112] |
LLOYD S.A theory of quantum gravity based on quantum computation. Quantum Physics, 2018.
|
[113] |
YING M.Recent progress in the research of quantum programming. Communcations of the CCF, 2017, 13(1): 21-27.
|
[114] |
PATNAIK S, YANG X, NAKAMATSU K.Nature-Inspired Computing and Optimization: Theory and Applications. Springer, 2017.
|
[115] |
YANG X.Nature-inspired Computation in Engineering. Springer, 2016.
|
[116] |
CHIONG R.Nature-inspired Algorithms for Optimisation. Springer, 2009.
|
[117] |
DU K, SWAMY M.Search and Optimization by Metaheuristics: Techniques and Algorithms Inspired by Nature. Birkhäuser, 2016.
|
[118] |
YANG X.Nature-inspired Metaheuristic Algorithms. Luniver Press, 2010.
|
[119] |
BURKE E, KENDALL G, NEWALL J, et al.Hyper-heuristics: An Emerging Direction in Modern Search Technology. Handbook of Metaheuristics, Springer, 2003: 457-474.
|
[120] |
DELORME A.Genetic Algorithm for Optimization of Mechanical Properties. Technical report, University of Cambridge, 2003.
|
[121] |
HAN J, PEI J, KAMBER M.Data Mining: Concepts and Techniques. Elsevier, 2011.
|
[122] |
FOSTER I, ZHAO Y, RAICU I, et al.Cloud Computing and Grid Computing 360-degree Compared. IEEE, 2008: 1-10.
|
[123] |
ZHANG Q, CHENG L, BOUTABA R.Cloud computing: state- of-the-art and research challenges. Journal of Internet Services and Applications, 2010, 1(1): 7-18.
|
[124] |
FISTER JR I, YANG X, FISTER I, et al.A brief review of nature- inspired algorithms for optimization. Elektrotehniški Vestnik, 2013, 80(3): 116-122.
|
[125] |
YANG X.Recent Advances in Swarm Intelligence and Evolutionary Computation. Springer, 2015.
|
[126] |
YANG X, KARAMANOGLU M.Swarm Intelligence and Bio-inspired Computation: An Overview. Swarm Intelligence and Bio-Inspired Computation, Elsevier, 2013: 3-23.
|
[127] |
REISSNER H.Über die eigengravitation des elektrischen Feldes nach der Einsteinschen theorie. Annalen der Physik, 1916, 355(9): 106-120.
|
[128] |
SCHWARZSCHILD K.Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen theorie. 1916.
|
[129] |
DROSTE J.On the field of a single centre in Einstein's theory of gravitation. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 1915, 17: 998-1011.
|
[130] |
HAWKING S W.Black hole explosions? Nature, 1974, 248(5443): 30-31.
|
[131] |
DATTA S.Materials Design Using Computational Intelligence Techniques. Crc Press, 2015.
|
[132] |
APOSTOLAKIS J.An introduction to data mining. Structure & Bonding, 2009, 134(472): 1-35.
|
[133] |
PANGNING T, STEINBACH M, KUMAR V.Introduction to data mining. Data Analysis in the Cloud, 2014, 22(6): 1-25.
|
[134] |
DATTA S, CHATTOPADHYAY P P.Soft computing techniques in advancement of structural metals. International Materials Reviews, 2013, 58(8): 475-504.
|
[135] |
DATTA S, BANERJEE M K.Fuzzy modeling of strength- composition-process parameter relationships of HSLA steels. Materials and Manufacturing Processes, 2005, 20(5): 761-776.
|
[136] |
DATTA S, MAHFOUF M, ZHANG Q, et al.Imprecise knowledge based design and development of titanium alloys for prosthetic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53: 350-365.
|
[137] |
DEY S, DEY P, DATTA S, et al.Rough set approach to predict the strength and ductility of TRIP steel. Materials and Manufacturing Processes, 2009, 24(2): 150-154.
|
[138] |
SINGH J, GILL S S.Fuzzy modeling and simulation of ultrasonic drilling of porcelain ceramic with hollow stainless steel tools. Materials and Manufacturing Processes, 2009, 24(4): 468-475.
|
[139] |
DEY S, DATTA S, CHATTOPADHYAY P P, et al.Modeling the properties of TRIP steel using AFIS: a distributed approach. Computational Materials Science, 2008, 43(3): 501-511.
|
[140] |
DEHGHANNASIRI R, XUE D, BALACHANDRAN P V, et al.Optimal experimental design for materials discovery. Computational Materials Science, 2017, 129: 311-322.
|
[141] |
GONG M, LI H, LUO E, et al.A multiobjective cooperative coevolutionary algorithm for hyperspectral sparse unmixing. IEEE Transactions on Evolutionary Computation, 2017, 21(2): 234-248.
|
[142] |
GONG M, WANG Z, ZHU Z, et al.A similarity-based multiobjective evolutionary algorithm for deployment optimization of near space communication system. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 878-897.
|
[143] |
YANG X S.Nature-Inspired Optimization Algorithms. Elsevier Science Publishers B. V., 2014: 1292.
|
[144] |
WITTEN I H, FRANK E, HALL M A, et al.Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2016.
|