Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (2): 190-194.DOI: 10.15541/jim20150349
• Orginal Article • Previous Articles Next Articles
MA Rong-Bin1, 2, CHENG Xu-Dong1, 2, ZOU Jun1, 2, LI Qing-Yu1, 2, HUANG Xia2
Received:
2015-08-10
Revised:
2015-10-16
Published:
2016-02-20
Online:
2016-01-15
About author:
MA Rong-Bin. E-mail: marongbinss@163.com
CLC Number:
MA Rong-Bin, CHENG Xu-Dong, ZOU Jun, LI Qing-Yu, HUANG Xia. Toughness and Thermal Shock of SiC Fiber/Yttria-stabilized-zirconia Composite Thick Thermal Barrier Coatings[J]. Journal of Inorganic Materials, 2016, 31(2): 190-194.
Spraying condition | Parameter |
---|---|
Are current/A | 450 |
Primary plasma gas flow/(L·min-1) | Ar (0.55) |
Secondary plasma gas flow/(L·min-1) | N2 (0.3) |
Powder carrier gas | N2 |
Powder feed rate/(g·min-1) | 20 |
Spray distance/mm | 85 |
Table 1 Spraying conditions of atmospheric plasma spray
Spraying condition | Parameter |
---|---|
Are current/A | 450 |
Primary plasma gas flow/(L·min-1) | Ar (0.55) |
Secondary plasma gas flow/(L·min-1) | N2 (0.3) |
Powder carrier gas | N2 |
Powder feed rate/(g·min-1) | 20 |
Spray distance/mm | 85 |
Coating ID | YSZ-KIC /(MPa·m1/2) | SiC fiber/YSZ-KIC /(MPa·m1/2) |
---|---|---|
1 | 1.11 | 1.53 |
2 | 1.17 | 1.74 |
3 | 1.11 | 1.89 |
4 | 1.13 | 1.82 |
5 | 1.12 | 1.37 |
Average value | 1.13 | 1.67 |
Table 2 Fracture toughness of two types of coating
Coating ID | YSZ-KIC /(MPa·m1/2) | SiC fiber/YSZ-KIC /(MPa·m1/2) |
---|---|---|
1 | 1.11 | 1.53 |
2 | 1.17 | 1.74 |
3 | 1.11 | 1.89 |
4 | 1.13 | 1.82 |
5 | 1.12 | 1.37 |
Average value | 1.13 | 1.67 |
Coating ID | SiC fiber/YSZ | YSZ | ||
---|---|---|---|---|
Thickness /mm | Cycles | Thickness /mm | Cycles | |
6 | 4.33 | 53 | 1.53 | 20 |
7 | 4.24 | 52 | 1.47 | 23 |
8 | 4.15 | 55 | 1.42 | 29 |
Average | 4.24 | 53.3 | 1.47 | 24 |
Table 3 Number of sustained cycles for SFY composite TBCs and YSZ coatings, and the corresponding coating thickness
Coating ID | SiC fiber/YSZ | YSZ | ||
---|---|---|---|---|
Thickness /mm | Cycles | Thickness /mm | Cycles | |
6 | 4.33 | 53 | 1.53 | 20 |
7 | 4.24 | 52 | 1.47 | 23 |
8 | 4.15 | 55 | 1.42 | 29 |
Average | 4.24 | 53.3 | 1.47 | 24 |
[1] | CAO X Q, VASSEN R, STOEVER D.Ceramic materials for thermal barrier coatings.Journal of European Ceramic Society, 2004, 24(1): 1-10. |
[2] | LI DE-LING, CHEN XU-DONG, YE WEI-PING, et al.Carbon fibet reinforced zirconia themal barrier and ablative thick composite coating.Journal of Wuhan University of Technology, 2010, 32(8): 18-21. |
[3] | LU HAORAN, WANG CHANG-AN, ZHANG CHENGUANG.Influence of Ln3+ and B3+ ions co-substitution on thermophysical properties of LnMB11O19-type magnetoplumbite LaMgAl11O19 for advanced thermal barrier coatings.J. Am. Ceram. Soc., 2013, 96(4): 1063-1066. |
[4] | CHEN XIAOLANG, ZOU BINGLIN, WANG YING, et al.Microstructure and thermal cycling behavior of air plasma-sprayed YSZ/LaMgAl11O19 composite coatings.Journal of Thermal Spray Technology, 2011, 20(6): 1328-1338. |
[5] | LEE P H, LEE S Y, KWON J Y, et al.Thermal cycling behavior and interfacial stability in thick thermal barrier coatings. Surf. Coat. Technol., 2010, 205(5): 1250-1255. |
[6] | GUO H B, VABEN R, STOVER D.Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density.Surf. Coat. Technol., 2004, 186(3): 353-363. |
[7] | BESHISH G K, FLOREY C W, WORZALA F J, et al.Fracture toughness of thermal spray ceramic coatings determined by the indentation technique.J. Therm. Spray Technol., 1993, 2(1): 35-38. |
[8] | WANG XIN, WANG CHANGJIANG, ALAN ATKINSON.Interface fracture toughness in thermal barrier coatings by cross- sectional indentation.Acta Materialia, 2012, 60(17): 6152-6163. |
[9] | GOPAL DWIVEDI, VAISHAK VISWANATHAN, SANJAY SAMPATH, et al.Fracture toughness of plasma-sprayed thermal barrier ceramics: influence of processing, microstructure, and thermal aging.J. Am. Ceram. Soc., 2014, 97(9): 2736-2744. |
[10] | SCHWINGEL D, TAYLOR R, HAUBOLD T, et al. Mechanical and thermaophysical properties of thick PYSZ thermal barrier coatings: correlation with microstructure and spraying parameters. Surf. Coat. Technol., 1998, 108-109: 99-106. |
[11] | XU ZHENHUA, DAI JIANWEI, NIU JING, et al.Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings.Journal of Alloys and Compounds, 2014, 617: 185-191. |
[12] | ZHONG XINGHUA, ZAO HUAYU, ZHOU XIAMING, et al.Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating.Journal of Alloys and Compounds, 2014, 593: 50-55. |
[13] | ]ZHAO YUEXING, LI DACHUAN, ZHONG XINGHUA, et al. Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying.Surf. Coat. Technol., 2014, 249: 48-55. |
[14] | VASSEN R, STUKE A, STOVER D.Recent developments in the field of thermal barrier coatings.J. Therm. Spray Technol., 2009, 18(2): 181-186. |
[15] | LEVI C G, HUTCHINSON J W, VIDAL-SEFIFM H, et al.Environmental degradation of thermal barrier coatings by molten deposits.MRS Bull., 2012, 37(10): 932-941. |
[16] | SIEBERT B, FUNKE C, VABEN R, et al. Changes in porosity and Young's modulus due to sintering of plasma sprayed thermal barrier coatings. J. Mater. Process. Technol., 1999, 92/93: 217-223. |
[1] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
[2] | MA Delong, BAO Yiwang, WAN Detian, QIU Yan, ZHENG Dezhi, FU Shuai. Pre-crack and Fracture Toughness Evaluation of Ceramic Thin Plates [J]. Journal of Inorganic Materials, 2021, 36(7): 733-737. |
[3] | LIANG Hanqin, YIN Jinwei, ZUO Kaihui, XIA Yongfeng, YAO Dongxu, ZENG Yuping. Mechanical and Dielectric Properties of Hot-pressed Si3N4 Ceramics with BaTiO3 Addition [J]. Journal of Inorganic Materials, 2021, 36(5): 535-540. |
[4] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
[5] | SANG Weiwei, ZHANG Hongsong, CHEN Huahui, WEN Bin, LI Xinchun. Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic [J]. Journal of Inorganic Materials, 2021, 36(4): 405-410. |
[6] | GAO Jiming, YANG Yang, LEI Ting, WANG Jin, LIU Jie, ZHANG Limin. Synthesis and Characterization of SiC@SiO2/BN/PI Composites by in-situ Polymerization [J]. Journal of Inorganic Materials, 2021, 36(1): 36-42. |
[7] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
[8] | JI Xiaojuan,YU Yueguang,LU Xiaoliang. Effects of Impurities on Properties of YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2020, 35(6): 669-674. |
[9] | ZHOU Xingyuan, LIU Wei, ZHANG Cheng, HUA Fuqiang, ZHANG Min, SU Xianli, TANG Xinfeng. Optimization of Thermoelectric Transport Properties of Nb-doped Mo1-xWxSeTe Solid Solutions [J]. Journal of Inorganic Materials, 2020, 35(12): 1373-1379. |
[10] | LIU Fengqi, FENG Jian, JIANG Yonggang, LI Liangjun. Preparation and Application of Boron Nitride Aerogels [J]. Journal of Inorganic Materials, 2020, 35(11): 1193-1202. |
[11] | HE Duan-Peng,GAO Hong,ZHANG Jing-Jing,WU Jie,LIU Bo-Tian,WANG Xiang-Ke. Simulation and Experimental Verification of Thermal Property for Aluminum Nitrides and Copper Clad Laminates under Space Thermal Environment [J]. Journal of Inorganic Materials, 2019, 34(9): 947-952. |
[12] | Bo-Le MA, Wen MA, Wei HUANG, Yu BAI, Rui-Ling JIA, Hong-Ying DONG. Thermophysical Property of Single-phase Strontium Zirconate Co-doped with Double Rare-earth Oxides as a Thermal Barrier Coating Material [J]. Journal of Inorganic Materials, 2019, 34(4): 394-400. |
[13] | Ren-Jie GENG, Song-Feng E, Chao-Wei LI, Tao-Tao LI, Jun WU, Ya-Gang YAO. High Crystallinity Boron Nitride Nanosheets: Preparation and the Property of BNNSs/Polyvinyl Alcohol Composite Film [J]. Journal of Inorganic Materials, 2019, 34(4): 401-406. |
[14] | LUO Jun, HE Shi-Yang, LI Zhi-Li, LI Yong-Bo, WANG Feng, ZHANG Ji-Ye. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 247-259. |
[15] | SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun. Lattice Thermal Conductivity in Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 260-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||