Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (7): 839-844.DOI: 10.15541/jim20220638
Special Issue: 【信息功能】介电、铁电、压电材料(202409)
• RESEARCH LETTER • Previous Articles
WANG Xueyao1(), WANG Wugang2, LI Yingwei1(
), PENG Qi1, LIANG Ruihong2(
)
Received:
2022-10-31
Revised:
2022-12-23
Published:
2023-03-09
Online:
2023-03-09
Contact:
LI Yingwei, associate professor. E-mail: yingweili@whu.edu.cn;About author:
WANG Xueyao (1996-), female, PhD candidate. E-mail: 2014301890049@whu.edu.cn
Supported by:
CLC Number:
WANG Xueyao, WANG Wugang, LI Yingwei, PENG Qi, LIANG Ruihong. Correlation between Constitutive Behavior and Fracture Performance of PZT Ceramics[J]. Journal of Inorganic Materials, 2023, 38(7): 839-844.
Material | Density /(g·cm-3) | Grain size/μm |
---|---|---|
PZT-4 | 7.7 | (2.5±0.5) |
PZT-5 | 7.8 | (5.0±0.5) |
PZT-8 | 7.6 | (2.5±0.5) |
Table S1 Microstructural properties of the investigated materials
Material | Density /(g·cm-3) | Grain size/μm |
---|---|---|
PZT-4 | 7.7 | (2.5±0.5) |
PZT-5 | 7.8 | (5.0±0.5) |
PZT-8 | 7.6 | (2.5±0.5) |
Material | GPa | GPa | ||||
---|---|---|---|---|---|---|
PZT-4 | 120 | 0.18 | 73 | 154 | 0.4 | 0.35 |
PZT-5 | 55 | 0.32 | 53 | 131 | 0.33 | 0.33 |
PZT-8 | 170 | 0 | 58 | 114 | 0.12 | 0.27 |
Table S2 Determined values of ${{\sigma }_{c}}$, ${{\varepsilon }_{r}}$, ${{E}_{\mathbf{initial}}}$, ${{E}_{\mathbf{unloading}}}$, ${{\nu }_{\mathbf{initial}}}$, and ${{\nu }_{\mathbf{unloading}}}$
Material | GPa | GPa | ||||
---|---|---|---|---|---|---|
PZT-4 | 120 | 0.18 | 73 | 154 | 0.4 | 0.35 |
PZT-5 | 55 | 0.32 | 53 | 131 | 0.33 | 0.33 |
PZT-8 | 170 | 0 | 58 | 114 | 0.12 | 0.27 |
[1] |
AKSEL E, JONES J L. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors, 2010, 10(3): 1935.
DOI PMID |
[2] |
RODEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc., 2015, 35(6):1659.
DOI URL |
[3] |
DAMJANOVIC D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Physics, 1998, 61(9):1267.
DOI URL |
[4] |
RODEL J, LI F. Lead-free piezoceramics: status and perspectives. MRS Bull., 2018, 43(8):576.
DOI URL |
[5] |
PISARENKO G, KOVALEV S P, CHUSHKO V M. Fracture toughness of piezoelectric ceramics. Strength Mater., 1980, 12(12):1492.
DOI URL |
[6] |
RODIG T, SCHONECKER A, GERLACH G. A survey on piezoelectric ceramics for generator applications. J. Am. Ceram. Soc., 2010, 93(4):901.
DOI URL |
[7] |
GALLEGO-JUAREZ J A. Piezoelectric ceramics and ultrasonic transducers. J. Phys. E Sci. Instrum., 1989, 22(22):804.
DOI URL |
[8] |
PFERNER R A, THURN G, ALDINGER F. Mechanical properties of PZT ceramics with tailored microstructure. Mater. Chem. Phys., 1999, 61(1):24.
DOI URL |
[9] |
LI F X, FANG D N, SOH A K. Theoretical saturated domain- orientation states in ferroelectric ceramics. Scr. Mater., 2006, 54(7):1241.
DOI URL |
[10] | CALDERON-MORENO J M, POPA M. Fracture Toughness Anisotropy by Indentation and SEVNB on Tetragonal PZT Polycrystals. 12th Meeting of the International Conference on the Strength of Materials (ICSMA 12), 2001, 319: 692. |
[11] |
LI Y W, LI F X. Large anisotropy of fracture toughness in mechanically poled/depoled ferroelectric ceramics. Scr. Mater., 2010, 62(5):313.
DOI URL |
[12] |
CALDERON-MORENO J M, GUIU F, MEREDITH M, et al. Fracture toughness anisotropy of PZT. Mater. Sci. Eng. A, 1997, 234-236(1):1062.
DOI URL |
[13] |
MEHTA K, VIRKAR A V. Fracture mechanisms in ferroelectric- ferroelastic lead zirconate titanate (Zr: Ti=0.54:0.46) ceramics. J. Am. Ceram. Soc., 1990, 73(3):567.
DOI URL |
[14] |
LUCATO SLDE; LUPASCU DC; RODEL J. Effect of poling direction on R-curve behavior in lead zirconate titanate. J. Am. Ceram. Soc., 2000, 83(2):424.
DOI URL |
[15] |
FETT T, GLAZOUNOV A, HOFFMANN M J, et al. On the interpretation of different R-curves for soft PZT. Eng. Fract. Mech., 2001, 68(10):1207.
DOI URL |
[16] |
SEO Y H, VOGLER M, ISAIA D, et al. Temperature-dependent R-curve behavior of Pb(Zr1-xTix)O3. Acta Mater., 2013, 61(17):6418.
DOI URL |
[17] | SCHNEIDER G A. Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu. Rev. Mater. Res., 2007, 37: 491. |
[18] | LI Y W, LIU Y, OCHSNER P E, et al. Temperature dependent fracture toughness of KNN-based lead-free piezoelectric ceramics. Acta Mater., 2019, 174: 369. |
[19] |
KUNA M. Fracture mechanics of piezoelectric materials-where are we right now? Eng. Fract. Mech., 2010, 77(2):309.
DOI URL |
[20] |
WEBBER K G, VOGLER M, KHANSUR N H, et al. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater. Struct., 2017, 26(6):063001.
DOI URL |
[21] |
KIM S B, KIM D Y, KIM J J, et al. Effect of grain size and poling on the fracture mode of lead zirconate titanate ceramics. J. Am. Ceram. Soc., 1990, 73(1):161.
DOI URL |
[22] | GUILLON O, THIEBAUD F, PERREUX D, et al. New considerations about the fracture mode of PZT ceramics. J. Am. Eur. Soc., 2005, 25: 2421. |
[23] | KUBLER J. Fracture toughness of ceramics using the SEVNB method a joint VAMSA/ESIS round robin. Fract. Mech. Ceram., 2002, 13: 437. |
[24] |
SALEM J A. Fracture toughness of advanced ceramics at room temperature. J. Res. Natl. Inst. Stand. Technol., 1992, 97(5):579.
DOI PMID |
[25] |
VOGLER M, FETT T, RODEL J. Crack-tip toughness of lead-free (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 piezoceramics. J. Am. Ceram. Soc., 2018, 101(12):5304.
DOI URL |
[26] |
LI F X, SOH A K. An optimization-based computational model for domain evolution in polycrystalline ferroelastics. Acta Mater., 2010, 58(6): 2207.
DOI URL |
[27] | BERMEJO R, DELUCA M. Mechanical characterization of PZT ceramics for multilayer piezoelectric actuators. J. Ceram. Sci. Technol., 2012, 3(4):159. |
[28] |
BERMEJO R, GRUNBICHLER H, KREITH J, et al. Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: Effect of mechanical load and temperature. J. Eur. Ceram. Soc., 2010, 30(3):705.
DOI URL |
[29] |
JELITTO H, KEBLER H, SCHNEIDER G A, et al. Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads. J. Eur. Ceram. Soc., 2005, 25(5):749.
DOI URL |
[30] |
DENKHAUS S M, VOGLER M, NOVK N, et al. Short crack fracture toughness in (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 relaxor ferroelectrics. J. Am. Ceram. Soc., 2017, 100(10):4760.
DOI URL |
[1] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[2] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. |
[3] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[6] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[7] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[8] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[9] | SHI Rui, LIU Wei, LI Lin, LI Huan, ZHANG Zhijun, RAO Guanghui, ZHAO Jingtai. Preparation and Properties of BaSrGa4O8: Tb3+ Mechanoluminescent Materials [J]. Journal of Inorganic Materials, 2024, 39(10): 1107-1113. |
[10] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[11] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[12] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[13] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[14] | XUN Daoxiang, LUO Xuwei, ZHOU Mingran, HE Jiale, RAN Maojin, HU Zhiyi, LI Yu. ZIF-L Derived Nitrogen-doped Carbon Nanosheets/Carbon Cloth Self-supported Electrode for Lithium-selenium Battery [J]. Journal of Inorganic Materials, 2024, 39(9): 1013-1021. |
[15] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||