无机材料学报 ›› 2022, Vol. 37 ›› Issue (9): 983-990.DOI: 10.15541/jim20210659
收稿日期:
2021-10-25
修回日期:
2022-12-24
出版日期:
2022-09-20
网络出版日期:
2022-01-24
通讯作者:
常 江, 研究员. E-mail: jchang@mail.sic.ac.cn作者简介:
盛丽丽(1992-), 女, 博士研究生. E-mail: lilissic@163.com
基金资助:
SHENG Lili1,2(), CHANG Jiang1,2(
)
Received:
2021-10-25
Revised:
2022-12-24
Published:
2022-09-20
Online:
2022-01-24
Contact:
CHANG Jiang, professor. E-mail: jchang@mail.sic.ac.cnAbout author:
SHENG Lili (1992-), female, PhD candidate. E-mail: lilissic@163.com
Supported by:
摘要:
兼具抗菌和组织修复活性的生物材料在再生医学领域具有广阔的应用前景。以光热和磁热为基础的热疗技术都具有抗菌作用, 但光的穿透能力有限, 磁热试剂的热转换效率较低, 限制了其在生物医学领域的应用。本研究合成了Fe2SiO4/Fe3O4双相复合生物陶瓷粉体, 不仅同时具有良好的光热和磁热效应, 还能有效释放活性的铁和硅酸根离子。用陶瓷粉体与明胶/聚己内酯复合制备的电纺丝膜不仅具有良好的细胞相容性, 而且具有光热和磁热效应。复合膜在相对温和的条件下近红外光(808 nm, 0.36 W·cm-2)与交变磁场(506 kHz, 837 A·m-1)同时处理15 min后, 与单独近红外光或磁场热处理相比, 具有更强的细菌抑制活性。因此, 这种集光热、磁热功能于一体且具有细胞相容性的Fe-Si基生物陶瓷及其复合材料在再生医学领域具有潜在的应用前景。
中图分类号:
盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990.
SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial[J]. Journal of Inorganic Materials, 2022, 37(9): 983-990.
图2 800 ℃不同气氛条件下FF煅烧产物的XRD图谱
Fig. 2 XRD patterns of FF products calcined at 800 ℃ in different atmospheres FF-1: the product obtained by calcining without argon gas; FF-2-FF-4: the product obtained by calcining with argon gas at 10, 25 and >25 kPa in the furnace, respectively.
Powder | Fe ion/(μg·mL-1) | Silicate ion/(μg·mL-1) |
---|---|---|
FF-1 | 43.96 | 70.12 |
FF-2 | 28.37 | 40.23 |
FF-3 | 13.62 | 27.16 |
FF-4 | 5.76 | 12.68 |
表1 不同条件下粉体产物在ECM中24 h的离子释放量
Table 1 Ion release of powders prepared under different conditions after 24 h being submersed in cell culture medium ECM
Powder | Fe ion/(μg·mL-1) | Silicate ion/(μg·mL-1) |
---|---|---|
FF-1 | 43.96 | 70.12 |
FF-2 | 28.37 | 40.23 |
FF-3 | 13.62 | 27.16 |
FF-4 | 5.76 | 12.68 |
图3 不同煅烧条件制备的粉体产物的磁热和光热性能
Fig. 3 Magnetothermal and photothermal properties of powder products after being calcined under different conditions (a) Magnetic analysis results; (b) Results of thermal performance of different powders under alternating magnetic field intensity of 506 kHz at 837 A·m-1; (c) Photothermal performance of different powders under 808 nm near-infrared light irradiation at a density of 0.36 W·cm-2. FF-1: the product obtained by calcining without argon gas; FF-2-FF-4: the product obtained by calcining with argon gas at 10, 25 and >25 kPa in the furnace, respectively. 1 emu=103 A·m-1, 1 Oe=1000/4π A/m Colorful figures are available on website
图5 FF-2粉体的SEM和TEM照片。
Fig. 5 SEM and TEM images of FF-2 powders (a, b) SEM images at low (a) and high (b) magnification; (c) TEM high-resolution image of the powder with inset showing electron diffraction pattern of the powder
图6 不同FF-2粉体含量的复合电纺丝膜的形貌
Fig. 6 Morphologies of composite electrospun membranes with different FF-2 powder compositing amounts (a) Optical photos; (b) SEM images. 0, 10, 20, 30, and 40 in the figures represent composite membranes with powder contents of 0, 10%, 20%, 30%, and 40%, respectively
Powder content/% | Fe ion/(μg·mL-1) | Silicate ion/(μg·mL-1) |
---|---|---|
0 | 0 | 0 |
10 | 0.05 | 0.27 |
20 | 0.13 | 1.45 |
30 | 0.32 | 2.76 |
40 | 0.61 | 5.98 |
表2 不同粉体含量的复合电纺丝膜的离子释放性能
Table 2 Ion release properties of composite electrospun films with different powder contents in cell culture medium ECM
Powder content/% | Fe ion/(μg·mL-1) | Silicate ion/(μg·mL-1) |
---|---|---|
0 | 0 | 0 |
10 | 0.05 | 0.27 |
20 | 0.13 | 1.45 |
30 | 0.32 | 2.76 |
40 | 0.61 | 5.98 |
图7 不同粉体含量的复合膜的光热和磁热性能
Fig. 7 Photothermal and magnetothermal properties of composite membranes with different powder contents (a) Under NIR light (0.36 W·cm-2) irradiation at a wavelength of 808 nm; (b) In an alternating magnetic field (506 kHz, 837A·m-1); (c) Composite film with 30% powder content under laser, alternating magnetic field and laser in combination with alternating magnetic field, respectively. 0, 10, 20, 30, and 40 in the figures represent composite membranes with powder contents of 0, 10%, 20%, 30%, and 40%, respectively. MTT: magnetothermal; PTT: photothermal; MTT+PTT: combined photothermal and magnetothermal
图8 FG-30复合电纺丝膜的细胞相容性
Fig. 8 Cytocompatibility of FG-30 composite electrospun membranes (a-f) SEM images of cell adhesion on FG-0 membrane (a-c) and FG-30 composite membrane (d-f) after 24 h of HUVEC culture, respectively; (g) Effect of composite membrane on HUVECs proliferation. Blank, FG-0, and FG-30 in the figures indicate blank control group, FG-0 electrospun membrane group, and FG-30 composite electrospun membrane group, respectively. * indicates p<0.05 which means significant difference between groups
图9 FG-30复合膜对金黄色葡萄球菌的光/磁热联合抑制作用
Fig. 9 Combined photo/magneto-thermal inhibition of S.aureus by FG-30 composite membrane (a) Optical photographs of colony coated plates; (b) Statistical results of inhibition rate. Blank, FG-0, FG-30, FG-30 (MTT), FG-30 (PTT), and FG-30 (MTT+PTT) denote blank control, FG-0 membrane, FG-30 membrane, FG-30 membrane with magnetothermal, FG-30 membrane with photothermal, FG-30 membrane with combined photothermal and magnetothermal, respectively. * indicates p<0.05 which means significant difference between groups
[1] |
BELKAID Y, TAMOUTOUNOUR S. The influence of skin microorganisms on cutaneous immunity. Nature Reviews Immunology, 2016, 16(6): 353-366.
DOI URL |
[2] |
FALANGA V. Wound healing and its impairment in the diabetic foot. Lancet, 2005, 366(9498): 1736-1743.
DOI URL |
[3] |
ROBSON M. Wound infection - a failure of wound healing caused by an imbalance of bacteria. Surgical Clinics of North America, 1997, 77(3): 637-650.
DOI URL |
[4] |
LI P L, HAN F X, CAO W W, et al. Carbon quantum dots derived from lysine and arginine simultaneously scavenge bacteria and promote tissue repair. Applied Materials Today, 2020, 19(1): 100601.
DOI URL |
[5] |
XIE X, WU J R, CAI X J, et al. Photothermal/pH response B-CuS-DOX nanodrugs for chemo-photothermal synergistic therapy of tumor. Journal of Inorganic Materials, 2020, 36(1): 81-87.
DOI URL |
[6] |
ZENG Y L, CHEN J J, TIAN Z F, et al. Preparation of mesoporous organosilica-based nanosystem for in vitro synergistic chemo-and photothermal therapy. Journal of Inorganic Materials, 2020, 35(12): 1365-1372.
DOI URL |
[7] |
ZHAO L Y, LIU Y M, XING R R, et al. Supramolecular photothermal effects: a promising mechanism for efficient thermal conversion. Angewandte Chemie International Edition, 2020, 59(10): 3793-3801.
DOI URL |
[8] |
WU G Z, WU Z Y, LIU L, et al. NIR light responsive MoS2 nanomaterials for rapid sterilization: optimum photothermal effect via sulfur vacancy modulation. Chemical Engineering Journal, 2022, 427(1): 132007.
DOI URL |
[9] |
CHEN R, ROMERO G, CHRISTIANSEN M G, et al. Wireless magnetothermal deep brain stimulation. Science, 2015, 347(6229): 1477-1480.
DOI URL |
[10] |
LI W, WEI W Y, WU X P, et al. The antibacterial and antibiofilm activities of mesoporous hollow Fe3O4 nanoparticles in an alternating magnetic field. Biomaterials Science, 2020, 8(16): 4492-4507.
DOI URL |
[11] |
ZHUANG H, LIN R C, LIU Y Q, et al. 3D-printed bioceramic scaffolds with osteogenic activity for simultaneous photo-magnetothermal therapy of bone tumor. ACS Biomaterials Science and Engineering, 2019, 5(12): 6725-6734.
DOI URL |
[12] |
FU D P, LIU J L, REN Q L, et al. Magnetic iron sulfide nanoparticles as thrombolytic agents for magnetocaloric therapy and photothermal therapy of thrombosis. Frontiers in Materials, 2019, 6(1): 316.
DOI URL |
[13] |
LIU J C, GUO X, ZHAO Z, et al. Fe3S4 nanoparticles for arterial inflammation therapy: integration of magnetic hyperthermia and photothermal treatment. Applied Materials Today, 2020, 18(1): 100457.
DOI URL |
[14] |
LI H Y, CHANG J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomaterialia, 2013, 9(2): 5379-5389.
DOI URL |
[15] |
ZHAI W Y, LU H X, CHEN L, et al. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomaterialia, 2012, 8(1): 341-349.
DOI URL |
[16] |
YU Q Q, CHANG J, WU C. Silicate bioceramics: from soft tissue regeneration to tumor therapy. Journal of Material Chemistry B, 2019, 7(36): 5449-5460.
DOI URL |
[17] |
MAO L X, XIA L G, CHANG J, et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomaterialia, 2017, 61(1): 217-232.
DOI URL |
[18] | GAO L, ZhOU Y L, PENG J L, et al. A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing. NPG Asia Materials, 2019, 11: 66. |
[19] | WEINTRAUB L R, GORAL A, GRASSO J, et al. Collagen biosynthesis in iron overload. Annals of the New York Academy of Sciences, 1988, 526(1): 179-184. |
[20] |
SHENG L, ZHANG Z, ZHANG Y, et al. A novel “hot spring”-mimetic hydrogel with excellent angiogenic properties for chronic wound healing. Biomaterials, 2020, 264(1): 120414.
DOI URL |
[21] |
XING M, HUAN Z G, LI Q, et al. Containerless processing of Ca-Sr-Si system bioactive materials: thermophysical properties and ion release behaviors. Ceramics International, 2017, 43(6): 5156-5163.
DOI URL |
[22] |
LI H Y, CHANG J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomaterialia, 2013, 9(6): 6981-6991.
DOI URL |
[23] |
XING M, WANG X Y, WANG E D, et al. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Acta Biomaterialia, 2018, 72(1): 381-395.
DOI URL |
[24] |
ZHANG J, SHI H S, LIU J Q, et al. Good hydration and cell-biological performances of superparamagnetic calcium phosphate cement with concentration-dependent osteogenesis and angiogenesis induced by ferric iron. Journal of Materials Chemistry B, 2015, 3(45): 8782-8795.
DOI URL |
[25] |
WU M, DEOKAR A R, LIAO J, et al. Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano, 2013, 7(2): 1281-1290.
DOI URL |
[26] |
IBELLI T, TEMPLETON S, LEVI-POLYACHENKO N. Progress on utilizing hyperthermia for mitigating bacterial infections. International Journal of Hyperthermia, 2018, 34(2): 144-156.
DOI URL |
[1] | 庞力斌, 王德平. 介孔硼硅酸盐玻璃微球药物载体的制备及其性能表征[J]. 无机材料学报, 2022, 37(7): 780-786. |
[2] | 刘城, 赵倩, 牟志伟, 雷洁红, 段涛. 新型铋基SiOCNF复合膜对放射性气态碘的吸附性能[J]. 无机材料学报, 2022, 37(10): 1043-1050. |
[3] | 张晓山, 王兵, 吴楠, 韩成, 刘海燕, 王应德. 高红外遮蔽SiZrOC纳米纤维膜的制备及其性能研究[J]. 无机材料学报, 2022, 37(1): 93-100. |
[4] | 马玲玲, 常江. Nd掺杂硅酸钙及其复合电纺丝膜的制备及性能研究[J]. 无机材料学报, 2021, 36(9): 974-980. |
[5] | 王袁杰, 裴学良, 李好义, 徐鑫, 何流, 黄政仁, 黄庆. 自由基引发活性聚碳硅烷交联及其在制备SiC纤维中的应用[J]. 无机材料学报, 2021, 36(9): 967-973. |
[6] | 朱子旻, 张敏慧, 张轩宇, 姚爱华, 林健, 王德平. 硼硅酸盐生物活性玻璃在直流电场下的体外矿化性能[J]. 无机材料学报, 2021, 36(9): 1006-1012. |
[7] | 林子扬, 常宇辰, 吴章凡, 包荣, 林文庆, 王德平. 不同模拟体液对硼硅酸盐生物活性玻璃基骨水泥矿化性能的影响[J]. 无机材料学报, 2021, 36(7): 745-752. |
[8] | 王恩典, 常江. 钼掺杂铜硅钙石的制备及其抗菌性能和细胞相容性研究[J]. 无机材料学报, 2021, 36(7): 738-744. |
[9] | 安伟佳, 李静, 王淑瑶, 胡金山, 蔺在元, 崔文权, 刘利, 解珺, 梁英华. Fe(III)/rGO/Bi2MoO6复合光催化剂制备及光催化芬顿协同降解苯酚[J]. 无机材料学报, 2021, 36(6): 615-622. |
[10] | 李婷婷, 张志明, 韩正波. 基于静电纺丝技术的聚合物基MOFs纳米纤维膜的研究进展[J]. 无机材料学报, 2021, 36(6): 592-600. |
[11] | 孙鲁超, 任孝旻, 杜铁锋, 罗颐秀, 张洁, 王京阳. 高熵化设计: 稀土硅酸盐材料关键性能优化新策略[J]. 无机材料学报, 2021, 36(4): 339-346. |
[12] | 张文进, 申倩倩, 薛晋波, 李琦, 刘旭光, 贾虎生. 具有高度有序氧空位的α-Fe2O3纳米带的制备及光电催化水氧化性能研究[J]. 无机材料学报, 2021, 36(12): 1290-1296. |
[13] | 包峰, 常江. 硅酸钙纳米线复合电纺丝支架的制备及离子释放研究[J]. 无机材料学报, 2021, 36(11): 1199-1207. |
[14] | 杨劢, 朱敏, 陈雨, 朱钰方. FePS3纳米片制备及其体外光热-光动力学联合治疗性能研究[J]. 无机材料学报, 2021, 36(10): 1074-1082. |
[15] | 朱正旺,冯锐,柳扬,张扬,谢文翰,董丽杰. 类鱼骨结构CoFe2O4纳米纤维的制备与性能[J]. 无机材料学报, 2020, 35(9): 1011-1016. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||