无机材料学报 ›› 2024, Vol. 39 ›› Issue (10): 1175-1181.DOI: 10.15541/jim20240125 CSTR: 32189.14.10.15541/jim20240125

• 研究快报 • 上一篇    下一篇

基于DFT的描述符预测生物陶瓷的降解性

陈梦杰1,2(), 王倩倩1,2, 吴成铁1,2, 黄健1,2,3()   

  1. 1.中国科学院 上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 200050
    2.中国科学院大学 材料科学与光电技术中心, 北京 100049
    3.上海大学 材料基因组工程研究院, 上海 200444
  • 收稿日期:2024-03-14 修回日期:2024-05-04 出版日期:2024-10-20 网络出版日期:2024-05-16
  • 通讯作者: 黄 健, 研究员. E-mail: huangj@shu.edu.cn
  • 作者简介:陈梦杰(1998-), 男, 硕士研究生. E-mail: chenmengjie20@mails.ucas.ac.cn

Predicting the Degradability of Bioceramics through a DFT-based Descriptor

CHEN Mengjie1,2(), WANG Qianqian1,2, WU Chengtie1,2, HUANG Jian1,2,3()   

  1. 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    3. Materials Genome Institute, Shanghai University, Shanghai 200444, China
  • Received:2024-03-14 Revised:2024-05-04 Published:2024-10-20 Online:2024-05-16
  • Contact: HUANG Jian, professor. E-mail: huangj@shu.edu.cn
  • About author:CHEN Mengjie (1998-), male, Master candidate. E-mail: chenmengjie20@mails.ucas.ac.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFB3813000);National Natural Science Foundation of China(52272256);State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology)(2022-KF-77)

摘要:

生物陶瓷以其优异的生物活性和可降解性在骨缺损修复领域受到广泛关注。然而, 如何使生物陶瓷降解速率与新骨生成速率相匹配仍然存在挑战, 因此需要更深入地了解生物陶瓷的降解特性。本研究采用密度泛函理论(DFT)计算并探索硅酸盐生物陶瓷的电子结构。研究结果表明硅酸盐生物陶瓷价带顶电荷密度的最大值(VBMFmax)与其降解性之间存在线性相关性, 随后的降解实验验证了这种相关性。此外, 对磷酸盐生物陶瓷的研究也证实了该描述符可用于预测不同生物陶瓷的降解性。这一发现有助于更好地理解生物陶瓷的降解机制, 并有望加速可控降解生物陶瓷的设计和开发。

关键词: 生物陶瓷, 硅酸盐, 磷酸盐, 第一性原理, 降解

Abstract:

Bioceramics have attracted extensive attention for bone defect repair due to their excellent bioactivity and degradability. However, challenges remain in matching the rate between bioceramic degradation and new bone formation, necessitating a deeper understanding of their degradation properties. In this study, density functional theory (DFT) calculations was employed to explore the structural and electronic characteristics of silicate bioceramics. These findings reveal a linear correlation between the maximum isosurface value of the valence band maximum (VBMFmax) and the degradability of silicate bioceramics. This correlation was subsequently validated through degradation experiments. Furthermore, the investigation on phosphate bioceramics demonstrates the potential of this descriptor in predicting the degradability of a broader range of bioceramics. This discovery offers valuable insights into the degradation mechanism of bioceramics and holds promise for accelerating the design and development of bioceramics with controllable degradation.

Key words: bioceramics, silicate, phosphate, first principles, degradation

中图分类号: