无机材料学报 ›› 2024, Vol. 39 ›› Issue (10): 1175-1181.DOI: 10.15541/jim20240125 CSTR: 32189.14.10.15541/jim20240125
陈梦杰1,2(), 王倩倩1,2, 吴成铁1,2, 黄健1,2,3(
)
收稿日期:
2024-03-14
修回日期:
2024-05-04
出版日期:
2024-10-20
网络出版日期:
2024-05-16
通讯作者:
黄 健, 研究员. E-mail: huangj@shu.edu.cn作者简介:
陈梦杰(1998-), 男, 硕士研究生. E-mail: chenmengjie20@mails.ucas.ac.cn
CHEN Mengjie1,2(), WANG Qianqian1,2, WU Chengtie1,2, HUANG Jian1,2,3(
)
Received:
2024-03-14
Revised:
2024-05-04
Published:
2024-10-20
Online:
2024-05-16
Contact:
HUANG Jian, professor. E-mail: huangj@shu.edu.cnAbout author:
CHEN Mengjie (1998-), male, Master candidate. E-mail: chenmengjie20@mails.ucas.ac.cn
Supported by:
摘要:
生物陶瓷以其优异的生物活性和可降解性在骨缺损修复领域受到广泛关注。然而, 如何使生物陶瓷降解速率与新骨生成速率相匹配仍然存在挑战, 因此需要更深入地了解生物陶瓷的降解特性。本研究采用密度泛函理论(DFT)计算并探索硅酸盐生物陶瓷的电子结构。研究结果表明硅酸盐生物陶瓷价带顶电荷密度的最大值(VBMFmax)与其降解性之间存在线性相关性, 随后的降解实验验证了这种相关性。此外, 对磷酸盐生物陶瓷的研究也证实了该描述符可用于预测不同生物陶瓷的降解性。这一发现有助于更好地理解生物陶瓷的降解机制, 并有望加速可控降解生物陶瓷的设计和开发。
中图分类号:
陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181.
CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor[J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181.
Name | Chemical formula | Mineralization ability |
---|---|---|
Wollastonite | CaSiO3 | ▲▲▲▲* |
Dicalcium silicate | Ca2SiO4 | ▲▲▲▲ |
Tricalcium silicate | Ca3SiO5 | ▲▲▲▲ |
Akermanite | Ca2MgSi2O7 | ▲▲▲ |
Merrwinite | Ca3MgSi2O8 | ▲▲▲ |
Diopside | CaMgSi2O6 | ▲▲ |
Monticellite | CaMgSiO4 | ▲▲ |
Baghdadite | Ca3ZrSi2O9 | ▲▲ |
Dimagnesium silicate | Mg2SiO4 | ▲ |
Magnesium silicate | MgSiO3 | ▲ |
Zinc silicate | Zn2SiO4 | ▲ |
Hardystonite | Ca2ZnSi2O7 | ▲ |
Sphene | CaTiSiO5 | ▲ |
Strontium-akermanite | Sr2MgSi2O7 | ▲ |
Strontium-hardystonite | Sr2ZnSi2O7 | ▲ |
Table 1 Apatite-mineralization ability of silicate bioceramics[32]
Name | Chemical formula | Mineralization ability |
---|---|---|
Wollastonite | CaSiO3 | ▲▲▲▲* |
Dicalcium silicate | Ca2SiO4 | ▲▲▲▲ |
Tricalcium silicate | Ca3SiO5 | ▲▲▲▲ |
Akermanite | Ca2MgSi2O7 | ▲▲▲ |
Merrwinite | Ca3MgSi2O8 | ▲▲▲ |
Diopside | CaMgSi2O6 | ▲▲ |
Monticellite | CaMgSiO4 | ▲▲ |
Baghdadite | Ca3ZrSi2O9 | ▲▲ |
Dimagnesium silicate | Mg2SiO4 | ▲ |
Magnesium silicate | MgSiO3 | ▲ |
Zinc silicate | Zn2SiO4 | ▲ |
Hardystonite | Ca2ZnSi2O7 | ▲ |
Sphene | CaTiSiO5 | ▲ |
Strontium-akermanite | Sr2MgSi2O7 | ▲ |
Strontium-hardystonite | Sr2ZnSi2O7 | ▲ |
Fig. 4 Linear relationships between VBMFmax and the degradation value of silicate bioceramics 7-day ion release values of (a) Ca and (b) Si in simulated body fluid (SBF); 28-day weight loss values in (c) Tris-HCl from references and (d) Tris-HCl from the degradation experiments
Bioceramic | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | Cell volume/Å3 | Density/ (g·cm-3) | Void space/% | |
---|---|---|---|---|---|---|---|---|---|---|
α-CaSiO3 | Calc. | 11.9532 | 6.9367 | 10.6153 | 90 | 111.274 | 90 | 820.198 | 2.8224 | 58.32 |
Expt. | 11.8322 | 6.8624 | 10.5297 | 90 | 111.245 | 90 | 796.878 | N/A | N/A | |
β-CaSiO3 | Calc. | 8.0250 | 7.3910 | 7.1500 | 90.083 | 95.531 | 103.437 | 410.433 | 2.8201 | 58.03 |
Expt. | 7.9400 | 7.3200 | 7.0700 | 90.030 | 95.370 | 103.430 | 397.818 | N/A | N/A | |
Ca2SiO4 | Calc. | 5.1234 | 11.3455 | 6.8071 | 90 | 90 | 90 | 395.748 | 2.8910 | 57.19 |
Expt. | 5.0910 | 11.3710 | 6.7820 | 90 | 90 | 90 | 392.608 | N/A | N/A | |
Ca3SiO5 | Calc. | 11.7501 | 14.3209 | 13.7622 | 104.813 | 94.354 | 90.117 | 2231.821 | 3.0580 | 54.91 |
Expt. | 11.6700 | 14.2400 | 13.7200 | 105.500 | 94.330 | 90 | 2190.324 | N/A | N/A | |
Ca2MgSi2O7 | Calc. | 7.9073 | 7.9073 | 5.053 | 90 | 90 | 90 | 315.940 | 2.8661 | 57.30 |
Expt. | 7.8900 | 7.8900 | 5.0410 | 90 | 90 | 90 | 313.813 | N/A | N/A | |
Ca2ZnSi2O7 | Calc. | 7.9043 | 7.9043 | 5.0592 | 90 | 90 | 90 | 316.089 | 3.2961 | 57.87 |
Expt. | 7.8279 | 7.8279 | 5.0138 | 90 | 90 | 90 | 307.226 | N/A | N/A | |
Ca3MgSi2O8 | Calc. | 9.8453 | 5.2925 | 13.7871 | 90 | 97.954 | 90 | 711.477 | 3.0690 | 54.41 |
Expt. | 9.9678 | 5.2693 | 13.6701 | 90 | 97.720 | 90 | 711.498 | N/A | N/A | |
Ca3ZrSi2O9 | Calc. | 7.4323 | 10.3145 | 10.5148 | 90 | 91.113 | 90 | 805.919 | 3.3927 | 56.03 |
Expt. | 7.3603 | 10.1766 | 10.4514 | 90 | 90.875 | 90 | 782.748 | N/A | N/A | |
CaMgSi2O6 | Calc. | 9.8690 | 9.0131 | 5.3152 | 90 | 106.122 | 90 | 454.197 | 3.1672 | 52.58 |
Expt. | 9.7760 | 8.9790 | 5.2670 | 90 | 105.940 | 90 | 444.554 | N/A | N/A | |
CaMgSiO4 | Calc. | 5.2260 | 6.8631 | 9.1738 | 90 | 90 | 90 | 327.740 | 3.1714 | 52.65 |
Expt. | 5.2408 | 6.8696 | 9.1348 | 90 | 90 | 90 | 328.869 | N/A | N/A | |
CaTiSiO5 | Calc. | 7.1294 | 8.7726 | 6.6609 | 90 | 114.041 | 90 | 380.457 | 3.4231 | 53.08 |
Expt. | 7.0730 | 8.7180 | 6.5550 | 90 | 113.970 | 90 | 369.339 | N/A | N/A | |
Ca2Al2SiO7 | Calc. | 7.6773 | 7.6773 | 5.1888 | 90 | 90 | 90 | 305.833 | 2.9777 | 56.92 |
Expt. | 7.6764 | 7.6764 | 5.1908 | 90 | 90 | 90 | 305.878 | N/A | N/A | |
Ca5(PO4)2SiO4 | Calc. | 6.8737 | 10.2116 | 15.4913 | 90 | 90 | 90 | 1087.357 | 2.9470 | 55.64 |
Expt. | 6.7370 | 10.1320 | 15.5080 | 90 | 90 | 90 | 1058.565 | N/A | N/A | |
Mg2SiO4 | Calc. | 4.8043 | 10.3245 | 6.0475 | 90 | 90 | 90 | 299.970 | 3.1157 | 52.95 |
Expt. | 4.7630 | 10.2400 | 5.9990 | 90 | 90 | 90 | 292.590 | N/A | N/A | |
MgSiO3 | Calc. | 9.3655 | 8.8559 | 5.3797 | 90 | 90 | 90 | 446.190 | 2.9892 | 54.83 |
Expt. | 9.2500 | 8.7400 | 5.3200 | 90 | 90 | 90 | 430.095 | N/A | N/A | |
Na2CaSiO4 | Calc. | 7.5297 | 7.5297 | 7.5297 | 90 | 90 | 90 | 426.904 | 2.7719 | 53.91 |
Expt. | 7.4800 | 7.4800 | 7.4800 | 90 | 90 | 90 | 418.509 | N/A | N/A | |
Na2Ca2Si3O9 | Calc. | 10.6053 | 10.6053 | 13.3064 | 89.839 | 90.161 | 120.224 | 1293.145 | 2.7306 | 58.66 |
Expt. | 10.5989 | 10.5989 | 13.3074 | 89.720 | 90.280 | 120.203 | 1291.944 | N/A | N/A | |
Sr2MgSi2O7 | Calc. | 8.0962 | 8.0962 | 5.2249 | 90 | 90 | 90 | 342.478 | 3.5660 | 56.58 |
Expt. | 8.0107 | 8.0107 | 5.1636 | 90 | 90 | 90 | 331.355 | N/A | N/A | |
Sr2ZnSi2O7 | Calc. | 8.0954 | 8.0954 | 5.2322 | 90 | 90 | 90 | 342.897 | 3.9593 | 57.16 |
Expt. | 8.0007 | 8.0007 | 5.1722 | 90 | 90 | 90 | 331.079 | N/A | N/A | |
SrSiO3 | Calc. | 12.4873 | 7.2366 | 10.9917 | 90 | 111.645 | 90 | 923.231 | 3.5335 | 58.61 |
Expt. | 12.3330 | 7.1460 | 10.8850 | 90 | 111.570 | 90 | 892.131 | N/A | N/A | |
Zn2SiO4 | Calc. | 14.1481 | 14.1481 | 9.4163 | 90 | 90 | 120 | 1632.331 | 4.0803 | 63.23 |
Expt. | 13.9710 | 13.9710 | 9.3340 | 90 | 90 | 120 | 1577.805 | N/A | N/A | |
Li2Ca2Si2O7 | Calc. | 5.1459 | 5.1459 | 41.6617 | 90 | 90 | 120 | 955.403 | 2.7346 | 57.34 |
Expt. | 5.1471 | 5.1471 | 41.6291 | 90 | 90 | 120 | 955.116 | N/A | N/A |
Table S1 Structural properties of silicate bioceramics
Bioceramic | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | Cell volume/Å3 | Density/ (g·cm-3) | Void space/% | |
---|---|---|---|---|---|---|---|---|---|---|
α-CaSiO3 | Calc. | 11.9532 | 6.9367 | 10.6153 | 90 | 111.274 | 90 | 820.198 | 2.8224 | 58.32 |
Expt. | 11.8322 | 6.8624 | 10.5297 | 90 | 111.245 | 90 | 796.878 | N/A | N/A | |
β-CaSiO3 | Calc. | 8.0250 | 7.3910 | 7.1500 | 90.083 | 95.531 | 103.437 | 410.433 | 2.8201 | 58.03 |
Expt. | 7.9400 | 7.3200 | 7.0700 | 90.030 | 95.370 | 103.430 | 397.818 | N/A | N/A | |
Ca2SiO4 | Calc. | 5.1234 | 11.3455 | 6.8071 | 90 | 90 | 90 | 395.748 | 2.8910 | 57.19 |
Expt. | 5.0910 | 11.3710 | 6.7820 | 90 | 90 | 90 | 392.608 | N/A | N/A | |
Ca3SiO5 | Calc. | 11.7501 | 14.3209 | 13.7622 | 104.813 | 94.354 | 90.117 | 2231.821 | 3.0580 | 54.91 |
Expt. | 11.6700 | 14.2400 | 13.7200 | 105.500 | 94.330 | 90 | 2190.324 | N/A | N/A | |
Ca2MgSi2O7 | Calc. | 7.9073 | 7.9073 | 5.053 | 90 | 90 | 90 | 315.940 | 2.8661 | 57.30 |
Expt. | 7.8900 | 7.8900 | 5.0410 | 90 | 90 | 90 | 313.813 | N/A | N/A | |
Ca2ZnSi2O7 | Calc. | 7.9043 | 7.9043 | 5.0592 | 90 | 90 | 90 | 316.089 | 3.2961 | 57.87 |
Expt. | 7.8279 | 7.8279 | 5.0138 | 90 | 90 | 90 | 307.226 | N/A | N/A | |
Ca3MgSi2O8 | Calc. | 9.8453 | 5.2925 | 13.7871 | 90 | 97.954 | 90 | 711.477 | 3.0690 | 54.41 |
Expt. | 9.9678 | 5.2693 | 13.6701 | 90 | 97.720 | 90 | 711.498 | N/A | N/A | |
Ca3ZrSi2O9 | Calc. | 7.4323 | 10.3145 | 10.5148 | 90 | 91.113 | 90 | 805.919 | 3.3927 | 56.03 |
Expt. | 7.3603 | 10.1766 | 10.4514 | 90 | 90.875 | 90 | 782.748 | N/A | N/A | |
CaMgSi2O6 | Calc. | 9.8690 | 9.0131 | 5.3152 | 90 | 106.122 | 90 | 454.197 | 3.1672 | 52.58 |
Expt. | 9.7760 | 8.9790 | 5.2670 | 90 | 105.940 | 90 | 444.554 | N/A | N/A | |
CaMgSiO4 | Calc. | 5.2260 | 6.8631 | 9.1738 | 90 | 90 | 90 | 327.740 | 3.1714 | 52.65 |
Expt. | 5.2408 | 6.8696 | 9.1348 | 90 | 90 | 90 | 328.869 | N/A | N/A | |
CaTiSiO5 | Calc. | 7.1294 | 8.7726 | 6.6609 | 90 | 114.041 | 90 | 380.457 | 3.4231 | 53.08 |
Expt. | 7.0730 | 8.7180 | 6.5550 | 90 | 113.970 | 90 | 369.339 | N/A | N/A | |
Ca2Al2SiO7 | Calc. | 7.6773 | 7.6773 | 5.1888 | 90 | 90 | 90 | 305.833 | 2.9777 | 56.92 |
Expt. | 7.6764 | 7.6764 | 5.1908 | 90 | 90 | 90 | 305.878 | N/A | N/A | |
Ca5(PO4)2SiO4 | Calc. | 6.8737 | 10.2116 | 15.4913 | 90 | 90 | 90 | 1087.357 | 2.9470 | 55.64 |
Expt. | 6.7370 | 10.1320 | 15.5080 | 90 | 90 | 90 | 1058.565 | N/A | N/A | |
Mg2SiO4 | Calc. | 4.8043 | 10.3245 | 6.0475 | 90 | 90 | 90 | 299.970 | 3.1157 | 52.95 |
Expt. | 4.7630 | 10.2400 | 5.9990 | 90 | 90 | 90 | 292.590 | N/A | N/A | |
MgSiO3 | Calc. | 9.3655 | 8.8559 | 5.3797 | 90 | 90 | 90 | 446.190 | 2.9892 | 54.83 |
Expt. | 9.2500 | 8.7400 | 5.3200 | 90 | 90 | 90 | 430.095 | N/A | N/A | |
Na2CaSiO4 | Calc. | 7.5297 | 7.5297 | 7.5297 | 90 | 90 | 90 | 426.904 | 2.7719 | 53.91 |
Expt. | 7.4800 | 7.4800 | 7.4800 | 90 | 90 | 90 | 418.509 | N/A | N/A | |
Na2Ca2Si3O9 | Calc. | 10.6053 | 10.6053 | 13.3064 | 89.839 | 90.161 | 120.224 | 1293.145 | 2.7306 | 58.66 |
Expt. | 10.5989 | 10.5989 | 13.3074 | 89.720 | 90.280 | 120.203 | 1291.944 | N/A | N/A | |
Sr2MgSi2O7 | Calc. | 8.0962 | 8.0962 | 5.2249 | 90 | 90 | 90 | 342.478 | 3.5660 | 56.58 |
Expt. | 8.0107 | 8.0107 | 5.1636 | 90 | 90 | 90 | 331.355 | N/A | N/A | |
Sr2ZnSi2O7 | Calc. | 8.0954 | 8.0954 | 5.2322 | 90 | 90 | 90 | 342.897 | 3.9593 | 57.16 |
Expt. | 8.0007 | 8.0007 | 5.1722 | 90 | 90 | 90 | 331.079 | N/A | N/A | |
SrSiO3 | Calc. | 12.4873 | 7.2366 | 10.9917 | 90 | 111.645 | 90 | 923.231 | 3.5335 | 58.61 |
Expt. | 12.3330 | 7.1460 | 10.8850 | 90 | 111.570 | 90 | 892.131 | N/A | N/A | |
Zn2SiO4 | Calc. | 14.1481 | 14.1481 | 9.4163 | 90 | 90 | 120 | 1632.331 | 4.0803 | 63.23 |
Expt. | 13.9710 | 13.9710 | 9.3340 | 90 | 90 | 120 | 1577.805 | N/A | N/A | |
Li2Ca2Si2O7 | Calc. | 5.1459 | 5.1459 | 41.6617 | 90 | 90 | 120 | 955.403 | 2.7346 | 57.34 |
Expt. | 5.1471 | 5.1471 | 41.6291 | 90 | 90 | 120 | 955.116 | N/A | N/A |
Bioceramic | Surrounding aqueous media | Weight loss | Total ion release in media after 7 d |
---|---|---|---|
α-CaSiO3 | SBF | 31.27% (28 d) | N/A |
SBF | 16.58% (28 d) | Ca: ~3.58 mmol·L-1/Si: ~0.67 mmol·L-1 | |
β-CaSiO3 | Tris-HCl | 24.8% (28 d) | N/A |
SBF | N/A | Ca: ~9.59 mmol·L-1/Si: ~1.73 mmol·L-1 | |
Ca2SiO4 | SBF | N/A | Ca: ~4.77 mmol·L-1/Si: ~0.83 mmol·L-1 |
Ca3SiO5 | SBF | N/A | Ca: ~6.82 mmol·L-1/Si: ~2.20 mmol·L-1 |
Ca2MgSi2O7 | Tris-HCl | 12.1% (28 d) | (2 d) Ca: ~13.51 mmol·L-1/Si: ~0.26 mmol·L-1/Mg: ~3.49 mmol·L-1 |
SBF | N/A | Ca: ~4.50 mmol·L-1/Si: ~2.18 mmol·L-1/Mg: ~2.15 mmol·L-1 | |
SBF | N/A | Ca: ~2.38 mmol·L-1/Si: ~0.91 mmol·L-1/Mg: ~1.23 mmol·L-1 | |
Ca2ZnSi2O7 | Tris-HCl | 8.4% (28 d) | (2 d) Ca: ~11.10 mmol·L-1/Si: ~0.17 mmol·L-1/Zn: ~0.06 mmol·L-1 |
Tris-HCl | N/A | Ca: ~2.68 mmol·L-1/Si: ~0.47 mmol·L-1/Zn: ~0.01 mmol·L-1 | |
Tris-HCl | 3.17% (28 d) | Ca: ~0.55 mmol·L-1/Si: ~0.17 mmol·L-1/Zn: ~0.02 mmol·L-1 | |
Ca3MgSi2O8 | Tris-HCl | 3.05% (7 d) | N/A |
Ca3ZrSi2O9 | SBF | N/A | Ca: ~2.55 mmol·L-1/Si: ~1.52 mmol·L-1/Zr: ~0.43 mmol·L-1 |
SBF | N/A | Ca: ~9.15 mmol·L-1/Si: ~1.55 mmol·L-1 | |
CaMgSi2O6 | SBF | N/A | Ca: ~3.87 mmol·L-1/Si: ~1.95 mmol·L-1/Mg: ~2.01 mmol·L-1 |
SBF | N/A | Ca: ~1.75 mmol·L-1/Si: ~1.11 mmol·L-1/Mg: ~0.85 mmol·L-1 | |
CaMgSiO4 | SBF | N/A | Ca: ~7.00 mmol·L-1/Si: ~2.64 mmol·L-1/Mg: ~3.29 mmol·L-1 |
SBF | 2.07% (7 d) 3.51% (14 d) 6.92% (28 d) | (2 d) Ca: ~13.17 mmol·L-1/Si: ~0.06 mmol·L-1/Mg: ~4.33 mmol·L-1 | |
CaTiSiO5 | Tris-HCl | N/A | Ca: ~0.23 mmol·L-1/Si: ~0.05 mmol·L-1 |
Ca2Al2SiO7 | SBF | N/A | Ca: ~2.64 mmol·L-1/Si: ~0.21 mmol·L-1/Al: ~0.12 mmol·L-1 |
Ca5(PO4)2SiO4 | SBF | N/A | Ca: ~7.10 mmol·L-1/Si: ~3.88 mmol·L-1/P: ~1.58 mmol·L-1 |
Mg2SiO4 | SBF | N/A | Ca: ~1.52 mmol·L-1/Mg: ~2.78 mmol·L-1 |
PBS | 0.11% (28 d) | N/A | |
MgSiO3 | Tris-HCl | 7.31% (7 d) 10.77% (14 d) | N/A |
Na2CaSiO4 | PBS / SBF | 2.49% (7 d) 2.86% (14 d) 1.72% (28 d) | Ca: ~5.68 mmol·L-1/Si: ~0.46 mmol·L-1 |
Na2Ca2Si3O9 | Tris-HCl | 4.32% (7 d) | N/A |
SBF | N/A | Ca: ~4.98/Si: ~0.87/Na: 172.57 (×10-6 mmol·L-1) | |
Sr2MgSi2O7 | N/A | N/A | (14 d) Sr: ~1.70 mmol·L-1/Si: ~2.24 mmol·L-1 / Mg: ~1.97 mmol·L-1 |
Sr2ZnSi2O7 | N/A | N/A | (14 d) Sr: ~1.71 mmol·L-1/Si: ~0.97 mmol·L-1 / Zn: ~0.024 mmol·L-1 |
Tris-HCl | 1.19% (7 d) 1.70% (14 d) 2.26% (28 d) | N/A | |
SrSiO3 | SBF | N/A | Sr: ~8.27 mmol·L-1/Si: ~2.35 mmol·L-1 |
Zn2SiO4 | N/A | N/A | Zn: ~0.012 mmol·L-1/Si: ~0.015 mmol·L-1 |
Li2Ca2Si2O7 | SBF | N/A | Ca: ~3.12 mmol·L-1/Si: ~2.33 mmol·L-1/Li: ~0.82 mmol·L-1 |
Table S2 Summary of degradation studies for silicate bioceramics
Bioceramic | Surrounding aqueous media | Weight loss | Total ion release in media after 7 d |
---|---|---|---|
α-CaSiO3 | SBF | 31.27% (28 d) | N/A |
SBF | 16.58% (28 d) | Ca: ~3.58 mmol·L-1/Si: ~0.67 mmol·L-1 | |
β-CaSiO3 | Tris-HCl | 24.8% (28 d) | N/A |
SBF | N/A | Ca: ~9.59 mmol·L-1/Si: ~1.73 mmol·L-1 | |
Ca2SiO4 | SBF | N/A | Ca: ~4.77 mmol·L-1/Si: ~0.83 mmol·L-1 |
Ca3SiO5 | SBF | N/A | Ca: ~6.82 mmol·L-1/Si: ~2.20 mmol·L-1 |
Ca2MgSi2O7 | Tris-HCl | 12.1% (28 d) | (2 d) Ca: ~13.51 mmol·L-1/Si: ~0.26 mmol·L-1/Mg: ~3.49 mmol·L-1 |
SBF | N/A | Ca: ~4.50 mmol·L-1/Si: ~2.18 mmol·L-1/Mg: ~2.15 mmol·L-1 | |
SBF | N/A | Ca: ~2.38 mmol·L-1/Si: ~0.91 mmol·L-1/Mg: ~1.23 mmol·L-1 | |
Ca2ZnSi2O7 | Tris-HCl | 8.4% (28 d) | (2 d) Ca: ~11.10 mmol·L-1/Si: ~0.17 mmol·L-1/Zn: ~0.06 mmol·L-1 |
Tris-HCl | N/A | Ca: ~2.68 mmol·L-1/Si: ~0.47 mmol·L-1/Zn: ~0.01 mmol·L-1 | |
Tris-HCl | 3.17% (28 d) | Ca: ~0.55 mmol·L-1/Si: ~0.17 mmol·L-1/Zn: ~0.02 mmol·L-1 | |
Ca3MgSi2O8 | Tris-HCl | 3.05% (7 d) | N/A |
Ca3ZrSi2O9 | SBF | N/A | Ca: ~2.55 mmol·L-1/Si: ~1.52 mmol·L-1/Zr: ~0.43 mmol·L-1 |
SBF | N/A | Ca: ~9.15 mmol·L-1/Si: ~1.55 mmol·L-1 | |
CaMgSi2O6 | SBF | N/A | Ca: ~3.87 mmol·L-1/Si: ~1.95 mmol·L-1/Mg: ~2.01 mmol·L-1 |
SBF | N/A | Ca: ~1.75 mmol·L-1/Si: ~1.11 mmol·L-1/Mg: ~0.85 mmol·L-1 | |
CaMgSiO4 | SBF | N/A | Ca: ~7.00 mmol·L-1/Si: ~2.64 mmol·L-1/Mg: ~3.29 mmol·L-1 |
SBF | 2.07% (7 d) 3.51% (14 d) 6.92% (28 d) | (2 d) Ca: ~13.17 mmol·L-1/Si: ~0.06 mmol·L-1/Mg: ~4.33 mmol·L-1 | |
CaTiSiO5 | Tris-HCl | N/A | Ca: ~0.23 mmol·L-1/Si: ~0.05 mmol·L-1 |
Ca2Al2SiO7 | SBF | N/A | Ca: ~2.64 mmol·L-1/Si: ~0.21 mmol·L-1/Al: ~0.12 mmol·L-1 |
Ca5(PO4)2SiO4 | SBF | N/A | Ca: ~7.10 mmol·L-1/Si: ~3.88 mmol·L-1/P: ~1.58 mmol·L-1 |
Mg2SiO4 | SBF | N/A | Ca: ~1.52 mmol·L-1/Mg: ~2.78 mmol·L-1 |
PBS | 0.11% (28 d) | N/A | |
MgSiO3 | Tris-HCl | 7.31% (7 d) 10.77% (14 d) | N/A |
Na2CaSiO4 | PBS / SBF | 2.49% (7 d) 2.86% (14 d) 1.72% (28 d) | Ca: ~5.68 mmol·L-1/Si: ~0.46 mmol·L-1 |
Na2Ca2Si3O9 | Tris-HCl | 4.32% (7 d) | N/A |
SBF | N/A | Ca: ~4.98/Si: ~0.87/Na: 172.57 (×10-6 mmol·L-1) | |
Sr2MgSi2O7 | N/A | N/A | (14 d) Sr: ~1.70 mmol·L-1/Si: ~2.24 mmol·L-1 / Mg: ~1.97 mmol·L-1 |
Sr2ZnSi2O7 | N/A | N/A | (14 d) Sr: ~1.71 mmol·L-1/Si: ~0.97 mmol·L-1 / Zn: ~0.024 mmol·L-1 |
Tris-HCl | 1.19% (7 d) 1.70% (14 d) 2.26% (28 d) | N/A | |
SrSiO3 | SBF | N/A | Sr: ~8.27 mmol·L-1/Si: ~2.35 mmol·L-1 |
Zn2SiO4 | N/A | N/A | Zn: ~0.012 mmol·L-1/Si: ~0.015 mmol·L-1 |
Li2Ca2Si2O7 | SBF | N/A | Ca: ~3.12 mmol·L-1/Si: ~2.33 mmol·L-1/Li: ~0.82 mmol·L-1 |
Ca (Mg)/P molar ratio | Compounds and their typical abbreviations | Chemical formula | Solubility at 25 ℃ in SBF/(g·L-1) |
---|---|---|---|
1.0 | Dicalcium phosphate anhydrous (DCPA or DCP), mineral monetite | CaHPO4 | ~0.048 |
1.33 | Octacalcium phosphate (OCP) | Ca8(HPO4)2(PO4)4·5H2O | ~0.0081 |
1.5 | α-Tricalcium phosphate(α-TCP) | α-Ca3(PO4)2 | ~0.0025 |
1.5 | β-Tricalcium phosphate(β-TCP) | β-Ca3(PO4)2 | ~0.0005 |
1.67 | Hydroxyapatite (HA or HAP) | Ca10(PO4)6(OH)2 | ~0.0003 |
1.67 | Fluorapatite (FA or FAP) | Ca10(PO4)6F2 | ~0.0002 |
1.67 | Oxyapatite (OA、OAP or OXA), mineral voelckerite | Ca10(PO4)6O | ~0.087 |
1.5 | Farringtonite | Mg3(PO4)2 | ~0.00215 |
1.5 | Bobierrite | Mg3(PO4)2·8H2O | ~0.0062 |
1.5 | Cattiite | Mg3(PO4)2·22H2O | ~0.00146 |
Table S3 Summary of degradation studies for phosphate bioceramics
Ca (Mg)/P molar ratio | Compounds and their typical abbreviations | Chemical formula | Solubility at 25 ℃ in SBF/(g·L-1) |
---|---|---|---|
1.0 | Dicalcium phosphate anhydrous (DCPA or DCP), mineral monetite | CaHPO4 | ~0.048 |
1.33 | Octacalcium phosphate (OCP) | Ca8(HPO4)2(PO4)4·5H2O | ~0.0081 |
1.5 | α-Tricalcium phosphate(α-TCP) | α-Ca3(PO4)2 | ~0.0025 |
1.5 | β-Tricalcium phosphate(β-TCP) | β-Ca3(PO4)2 | ~0.0005 |
1.67 | Hydroxyapatite (HA or HAP) | Ca10(PO4)6(OH)2 | ~0.0003 |
1.67 | Fluorapatite (FA or FAP) | Ca10(PO4)6F2 | ~0.0002 |
1.67 | Oxyapatite (OA、OAP or OXA), mineral voelckerite | Ca10(PO4)6O | ~0.087 |
1.5 | Farringtonite | Mg3(PO4)2 | ~0.00215 |
1.5 | Bobierrite | Mg3(PO4)2·8H2O | ~0.0062 |
1.5 | Cattiite | Mg3(PO4)2·22H2O | ~0.00146 |
Bioceramic | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | Cell volume/Å3 | Density/ (g·cm-3) | Void space/% | |
---|---|---|---|---|---|---|---|---|---|---|
DCP | Calc. | 6.7222 | 6.9771 | 7.1003 | 75.727 | 83.353 | 88.127 | 320.567 | 2.8192 | 55.11 |
Expt. | 6.7205 | 6.9810 | 7.0970 | 75.716 | 83.359 | 88.176 | 320.503 | N/A | N/A | |
OCP | Calc. | 20.0539 | 9.6632 | 6.9266 | 90.376 | 93.188 | 110.180 | 1257.459 | 2.5951 | 58.04 |
Expt. | 19.6920 | 9.5230 | 6.8350 | 90.150 | 92.540 | 108.650 | 1213.058 | N/A | N/A | |
α-TCP | Calc. | 5.2650 | 5.2650 | 7.2297 | 89.964 | 90.036 | 64.657 | 181.125 | 2.8437 | 57.68 |
Expt. | 5.2719 | 5.2719 | 7.2338 | 89.713 | 90.287 | 64.441 | 181.367 | N/A | N/A | |
β-TCP | Calc. | 14.1827 | 14.1827 | 14.1827 | 43.823 | 43.823 | 43.823 | 1241.876 | 2.9033 | 75.04 |
Expt. | 14.4070 | 14.4070 | 14.4070 | 43.443 | 43.443 | 43.443 | 1282.726 | N/A | N/A | |
HAP | Calc. | 9.5609 | 9.5609 | 6.9081 | 90 | 90 | 120 | 546.872 | 3.0505 | 55.17 |
Expt. | 9.4240 | 9.4240 | 6.8790 | 90 | 90 | 120 | 529.086 | N/A | N/A | |
FAP | Calc. | 9.5015 | 9.5015 | 6.9174 | 90 | 90 | 120 | 540.833 | 3.0968 | 54.78 |
Expt. | 9.3770 | 9.3770 | 6.8880 | 90 | 90 | 120 | 524.507 | N/A | N/A | |
OAP | Calc. | 9.6140 | 9.6140 | 6.8905 | 90 | 90 | 120 | 551.555 | 2.9704 | 56.88 |
Expt. | 9.4320 | 9.4320 | 6.8810 | 90 | 90 | 120 | 530.139 | N/A | N/A | |
Mg3(PO4)2 | Calc. | 5.1226 | 8.3405 | 8.9544 | 90 | 120.550 | 90 | 329.469 | 2.6498 | 60.83 |
Expt. | 5.1224 | 8.3404 | 8.9544 | 90 | 120.549 | 90 | 329.456 | N/A | N/A | |
Mg3(PO4)2·8H2O | Calc. | 8.4348 | 8.4348 | 4.6912 | 80.689 | 99.311 | 74.357 | 309.660 | 2.1825 | 59.26 |
Expt. | 8.4235 | 8.4235 | 4.6942 | 80.788 | 99.212 | 74.232 | 309.059 | N/A | N/A | |
Mg3(PO4)2·22H2O | Calc. | 6.8362 | 7.0170 | 15.8842 | 87.185 | 94.670 | 118.362 | 668.225 | 1.6382 | 66.59 |
Expt. | 6.9265 | 7.0204 | 15.9613 | 88.374 | 94.305 | 119.386 | 674.334 | N/A | N/A |
Table S4 Structural properties of phosphate bioceramics
Bioceramic | a/Å | b/Å | c/Å | α/(°) | β/(°) | γ/(°) | Cell volume/Å3 | Density/ (g·cm-3) | Void space/% | |
---|---|---|---|---|---|---|---|---|---|---|
DCP | Calc. | 6.7222 | 6.9771 | 7.1003 | 75.727 | 83.353 | 88.127 | 320.567 | 2.8192 | 55.11 |
Expt. | 6.7205 | 6.9810 | 7.0970 | 75.716 | 83.359 | 88.176 | 320.503 | N/A | N/A | |
OCP | Calc. | 20.0539 | 9.6632 | 6.9266 | 90.376 | 93.188 | 110.180 | 1257.459 | 2.5951 | 58.04 |
Expt. | 19.6920 | 9.5230 | 6.8350 | 90.150 | 92.540 | 108.650 | 1213.058 | N/A | N/A | |
α-TCP | Calc. | 5.2650 | 5.2650 | 7.2297 | 89.964 | 90.036 | 64.657 | 181.125 | 2.8437 | 57.68 |
Expt. | 5.2719 | 5.2719 | 7.2338 | 89.713 | 90.287 | 64.441 | 181.367 | N/A | N/A | |
β-TCP | Calc. | 14.1827 | 14.1827 | 14.1827 | 43.823 | 43.823 | 43.823 | 1241.876 | 2.9033 | 75.04 |
Expt. | 14.4070 | 14.4070 | 14.4070 | 43.443 | 43.443 | 43.443 | 1282.726 | N/A | N/A | |
HAP | Calc. | 9.5609 | 9.5609 | 6.9081 | 90 | 90 | 120 | 546.872 | 3.0505 | 55.17 |
Expt. | 9.4240 | 9.4240 | 6.8790 | 90 | 90 | 120 | 529.086 | N/A | N/A | |
FAP | Calc. | 9.5015 | 9.5015 | 6.9174 | 90 | 90 | 120 | 540.833 | 3.0968 | 54.78 |
Expt. | 9.3770 | 9.3770 | 6.8880 | 90 | 90 | 120 | 524.507 | N/A | N/A | |
OAP | Calc. | 9.6140 | 9.6140 | 6.8905 | 90 | 90 | 120 | 551.555 | 2.9704 | 56.88 |
Expt. | 9.4320 | 9.4320 | 6.8810 | 90 | 90 | 120 | 530.139 | N/A | N/A | |
Mg3(PO4)2 | Calc. | 5.1226 | 8.3405 | 8.9544 | 90 | 120.550 | 90 | 329.469 | 2.6498 | 60.83 |
Expt. | 5.1224 | 8.3404 | 8.9544 | 90 | 120.549 | 90 | 329.456 | N/A | N/A | |
Mg3(PO4)2·8H2O | Calc. | 8.4348 | 8.4348 | 4.6912 | 80.689 | 99.311 | 74.357 | 309.660 | 2.1825 | 59.26 |
Expt. | 8.4235 | 8.4235 | 4.6942 | 80.788 | 99.212 | 74.232 | 309.059 | N/A | N/A | |
Mg3(PO4)2·22H2O | Calc. | 6.8362 | 7.0170 | 15.8842 | 87.185 | 94.670 | 118.362 | 668.225 | 1.6382 | 66.59 |
Expt. | 6.9265 | 7.0204 | 15.9613 | 88.374 | 94.305 | 119.386 | 674.334 | N/A | N/A |
[1] | WU C T, CHANG J. A review of bioactive silicate ceramics. Biomedical Materials, 2013, 8(3): 12. |
[2] | KANG Z R, YU B, FU S Y, et al. Three-dimensional printing of CaTiO3 incorporated porous β-Ca2SO4 composite scaffolds for bone regeneration. Applied Materials Today, 2019, 16: 132. |
[3] | MOHAN N, PALANGADAN R, FERNANDEZ F B, et al. Preparation of hydroxyapatite porous scaffold from a ‘coral-like’ synthetic inorganic precursor for use as a bone substitute and a drug delivery vehicle. Materials Science and Engineering: C, 2018, 92: 329. |
[4] | MEISSNER R, BERTOL L, REHMAN M A U, et al. Bioprinted 3D calcium phosphate scaffolds with gentamicin releasing capability. Ceramics International, 2019, 45(6): 7090. |
[5] | ERASMUS E P, SULE R, JOHNSON O T, et al. In vitro evaluation of porous borosilicate, borophosphate and phosphate bioactive glasses scaffolds fabricated using foaming agent for bone regeneration. Scientific Reports, 2018, 8: 13. |
[6] | SRINATH P, AZEEM P A, REDDY K V. Review on calcium silicate-based bioceramics in bone tissue engineering. International Journal of Applied Ceramic Technology, 2020, 17(5): 2450. |
[7] | JODATI H, YILMAZ B, EVIS Z. Calcium zirconium silicate (baghdadite) ceramic as a biomaterial. Ceramics International, 2020, 46(14): 21902. |
[8] | RIBAS R G, SCHATKOSKI V M, MONTANHEIRO T L D, et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceramics International, 2019, 45(17): 21051. |
[9] | SCHATKOSKI V M, MONTANHEIRO T L D, DE MENEZES B R C, et al. Current advances concerning the most cited metal ions doped bioceramics and silicate-based bioactive glasses for bone tissue engineering. Ceramics International, 2021, 47(3): 2999. |
[10] | WU C, CHANG J. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 83B(1): 153. |
[11] | SUN H L, WU C T, DAI K R, et al. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials, 2006, 27(33): 5651. |
[12] | MA J, WANG C Z, HUANG B X, et al. In vitro degradation and apatite formation of magnesium and zinc incorporated calcium silicate prepared by Sol-Gel method. Materials Technology, 2021, 36(7): 420. |
[13] | CHEN Y W, HO C C, HUANG T H, et al. The ionic products from mineral trioxide aggregate-induced odontogenic differentiation of dental pulp cells via activation of the Wnt/β-catenin signaling pathway. Journal of Endodontics, 2016, 42(7): 1062. |
[14] | SADEGHZADE S, EMADI R, TAVANGARIAN F. Combustion assisted synthesis of hardystonite nanopowder. Ceramics International, 2016, 42(13): 14656. |
[15] | SHIE M Y, CHIANG W H, CHEN I W P, et al. Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate-graphene composites. Materials Science and Engineering: C, 2017, 73: 726. |
[16] | DU Z Y, LENG H J, GUO L Y, et al. Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Composites Part B-Engineering, 2020, 190: 15. |
[17] | VENKATRAMAN S K, SWAMIAPPAN S. Synthesis, bioactivity and mechanical stability of Mg/Ca silicate biocomposites developed for tissue engineering applications. ChemistrySelect, 2019, 4(45): 13099. |
[18] | ZHU T L, ZHU M, ZHU Y F. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceramics International, 2020, 46(9): 13607. |
[19] | LIAO F, PENG X Y, YANG F, et al. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Materials Science and Engineering: C, 2019, 104: 11. |
[20] | SU Y H, PAN C T, TSENG Y S, et al. Rare earth element cerium substituted Ca-Si-Mg system bioceramics: from mechanism to mechanical and degradation properties. Ceramics International, 2021, 47(14): 19414. |
[21] | KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169. |
[22] | BLOCHL P E. Projector augmented-wave method. Physical Review B, 1994, 50(24): 17953. |
[23] | BLOCHL P E, JEPSEN O, ANDERSEN O K. Improved tetrahederon method for brillouin-zone integrations. Physical Review B, 1994, 49(23): 16223-16233. |
[24] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1997, 78(7): 1396. |
[25] | MONKHORST H J, PACK J D. Special points for brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188. |
[26] | MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, 44: 1272. |
[27] | REGI M V, ESBRIT P, SALINAS A J. Degradative effects of the biological environment on ceramic biomaterials. Biomaterials Science (Fourth Edition), 2020: 955. |
[28] | ZHANG M, ZHAI W, CHANG J. Preparation and characterization of a novel willemite bioceramic. Journal of Materials Science- Materials in Medicine, 2010, 21(4): 1169. |
[29] | DEKOCK R L. Proton affinity and frontier orbital concept- predictions and pitfalls. Journal of the American Chemical Society, 1975, 97(19): 5592. |
[30] | DEKOCK R L, BARBACHYN M R. Proton affinity, ionization- energy, and the nature of frontier orbital electron-density. Journal of the American Chemical Society, 1979, 101(22): 6516. |
[31] | HUANG J, WANG B, YU Y, et al. Electronic origin of doping- induced enhancements of reactivity: case study of tricalcium silicate. Journal of Physical Chemistry C, 2015, 119(46): 25991. |
[32] | WU C T, CHANG J. Silicate bioceramics for bone tissue regeneration. Journal of Inorganic Materials, 2013, 28(1): 29. |
[33] | WU C T, RAMASWAMY Y, BOUGHTON P, et al. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. Acta Biomaterialia, 2008, 4(2): 343. |
[34] | WANG G C, LU Z F, DWARTE D, et al. Porous scaffolds with tailored reactivity modulate in-vitro osteoblast responses. Materials Science and Engineering: C, 2012, 32(7): 1818. |
[35] | RAMASWAMY Y, WU C, VAN HUMMEL A, et al. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials, 2008, 29(33): 4392. |
[36] | GOU Z G, CHANG J, ZHAI W Y, et al. Study on the self-setting property and the in vitro bioactivity of β-Ca2SiO4. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 73B(2): 244. |
[37] | ZHAO W Y, WANG J Y, ZHAI W Y, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials, 2005, 26(31): 6113. |
[38] | NAJAFINEZHAD A, ABDELLAHI M, GHAYOUR H, et al. A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Materials Science and Engineering: C, 2017, 72: 259. |
[39] | WANG G C, LU Z F, LIU X Y, et al. Nanostructured glass-ceramic coatings for orthopaedic applications. Journal of the Royal Society Interface, 2011, 8(61): 1192. |
[40] | LI H C, WANG D G, CHEN C Z. Effect of sodium oxide and magnesia on structure, in vitro bioactivity and degradability of wollastonite. Materials Letters, 2014, 135: 237. |
[41] | KALANTARI E, NAGHIB S M, NAIMI-JAMAL M R, et al. Nanostructured monticellite for tissue engineering applications -- Part I: microstructural and physicochemical characteristics. Ceramics International, 2018, 44(11): 12731. |
[42] | MA J, HUANG B X, ZHAO X C, et al. In vitro degradability and apatite-formation ability of monticellite (CaMgSiO4) bioceramic. Ceramics International, 2019, 45(3): 3754. |
[43] | RAFIENIA M, BIGHAM A, SAUDI A, et al. Gehlenite nanobioceramic: Sol-Gel synthesis, characterization, and in vitro assessment of its bioactivity. Materials Letters, 2018, 225: 89. |
[44] | LU W H, DUAN W, GUO Y P, et al. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic. Journal of Biomaterials Applications, 2012, 26(6): 637. |
[45] | TAVANGARIAN F, EMADI R. Nanostructure effects on the bioactivity of forsterite bioceramic. Materials Letters, 2011, 65(4): 740. |
[46] | SUN H, HE S W, WU P, et al. A novel MgO-CaO-SiO2 system for fabricating bone scaffolds with improved overall performance. Materials, 2016, 9(4): 12. |
[47] | JIN X G, CHANG J A, ZHAI W Y, et al. Preparation and characterization of clinoenstatite bioceramics. Journal of the American Ceramic Society, 2011, 94(1): 173. |
[48] | ZHAO Y K, NING C Q, CHANG J. Sol-Gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. Journal of Sol-Gel Science and Technology, 2009, 52(1): 69. |
[49] | DU R L, CHANG J. Preparation and characterization of bioactive sol-gel-derived Na2Ca2Si3O9. Journal of Materials Science-Materials in Medicine, 2004, 15(12): 1285. |
[50] | ZHANG M L, WU C T, LIN K L, et al. Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si (M = Zn, Mg) silicate bioceramics. Journal of Biomedical Materials Research Part A, 2012, 100A(11): 2979. |
[51] | ZHANG M L, LIN K L, CHANG J. Preparation and characterization of Sr-hardystonite (Sr2ZnSi2O7) for bone repair applications. Materials Science and Engineering: C, 2012, 32(2): 184. |
[52] | ZHANG M L, ZHAI W Y, LIN K L, et al. Synthesis, in vitro hydroxyapatite forming ability, and cytocompatibility of strontium silicate powders. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 93B(1): 252. |
[53] | ZHANG M L, ZHAI W Y, CHANG J. Preparation and characterization of a novel willemite bioceramic. Journal of Materials Science-Materials in Medicine, 2010, 21(4): 1169. |
[54] | XU H Y, ZHAI D, CAO W T, et al. Mineralization activity of Li2Ca2Si2O7 bioceramics. Journal of Inorganic Materials, 2021, 36(7): 753. |
[55] | WANG X, CHANG J. Application of bioceramics in tissue engineering. Chinese Bulletin of Life Sciences, 2020, 32(3): 257. |
[56] | KUCKO N W, HERBER R P, LEEUWENBURGH S C G, et al. Calcium phosphate bioceramics and cements. //ANTHONY A, ROBERT L, TONY M, ROBERT N, et al. Principles of Regenerative Medicine (Third Edition). New York: Academic Press, 2019: 591. |
[57] | DOROZHKIN S V. Calcium orthophosphate bioceramics. Ceramics International, 2015, 41(10): 13913. |
[58] | HABIBOVIC P, BASSETT D C, DOILLON C J, et al. Collagen biomineralization in vivo by sustained release of inorganic phosphate ions. Advanced Materials, 2010, 22(16): 1858. |
[59] |
MA H, FENG C, CHANG J, et al. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomaterialia, 2018, 79: 37.
DOI PMID |
[60] | NABIYOUNI M, BRÜCKNER T, ZHOU H, et al. Magnesium- based bioceramics in orthopedic applications. Acta Biomaterialia, 2018, 66: 23. |
[1] | 吴玉豪, 彭仁赐, 程春玉, 杨丽, 周益春. HfxTa1-xC体系力学性能及熔化曲线的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 761-768. |
[2] | 靳宇翔, 宋二红, 朱永福. 3d过渡金属单原子掺杂石墨烯缺陷电催化还原CO2的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 845-852. |
[3] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[4] | 王伟华, 张磊宁, 丁峰, 代兵, 韩杰才, 朱嘉琦, 贾怡, 杨宇. 铱衬底上金刚石外延形核与生长: 第一性原理计算[J]. 无机材料学报, 2024, 39(4): 416-422. |
[5] | 岳仔豪, 杨小兔, 张正亮, 邓瑞翔, 张涛, 宋力昕. Pb2+对掺杂硼硅酸盐玻璃中CsPbBr3钙钛矿量子点发光性能的影响[J]. 无机材料学报, 2024, 39(4): 449-456. |
[6] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[7] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[8] | 蔡梦宇, 李杨虹淼, 杨彩云, 周雨婷, 吴昊. 基于活性污泥焚灰的类Fenton催化剂的制备及其对亚甲基蓝的降解性能[J]. 无机材料学报, 2024, 39(10): 1135-1142. |
[9] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[10] | 郑嘉乾, 卢霄, 鲁亚杰, 王迎军, 王臻, 卢建熙. 医用生物陶瓷的功能性生物适配机制及应用[J]. 无机材料学报, 2024, 39(1): 1-16. |
[11] | 吴晓维, 张涵, 曾彪, 明辰, 孙宜阳. 杂化泛函HSE和PBE0计算CsPbI3缺陷性质的比较研究[J]. 无机材料学报, 2023, 38(9): 1110-1116. |
[12] | 施哲, 刘伟业, 翟东, 谢建军, 朱钰方. 3D打印制备镁黄长石生物陶瓷骨组织工程支架及其性能[J]. 无机材料学报, 2023, 38(7): 763-770. |
[13] | 李乾利, 黎乃鑫, 李育成, 刘慎业, 程帅, 杨光, 任宽, 王峰, 赵景泰. 辐射光致发光材料及其应用研究进展[J]. 无机材料学报, 2023, 38(7): 731-749. |
[14] | 吴锐, 张敏慧, 金成韵, 林健, 王德平. 光热核壳TiN@硼硅酸盐生物玻璃纳米颗粒的降解和矿化性能[J]. 无机材料学报, 2023, 38(6): 708-716. |
[15] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||