[1] |
ZHOU L F, MASON J H, LI W Y, et al. Comprehensive review of chromium deposition and poisoning of solid oxide fuel cells (SOFCs) cathode materials. Renewable and Sustainable Energy Reviews, 2020, 134: 110320.
|
[2] |
ZHANG W, HU Y H. Recent progress in design and fabrication of SOFC cathodes for efficient catalytic oxygen reduction. Catalysis Today, 2023, 409: 71.
|
[3] |
AHMAD M Z, AHMAD S H, CHEN R S, et al. Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application. International Journal of Hydrogen Energy, 2022, 47(2):1103.
|
[4] |
TAHIR N N M, BAHARUDDIN N A, SAMAT A A, et al. A review on cathode materials for conventional and proton-conducting solid oxide fuel cells. Journal of Alloys and Compounds, 2022, 894: 162458.
|
[5] |
WANG F F, KISHIMOTO H, ISHIYAMA T, et al. A review of sulfur poisoning of solid oxide fuel cell cathode materials for solid oxide fuel cells. Journal of Power Sources, 2020, 478: 228763.
|
[6] |
CHEN S G, ZHANG H X, YAO C G, et al. Review of SOFC cathode performance enhancement by surface modifications: recent advances and future directions. Energy & Fuels, 2023, 37(5):3470.
|
[7] |
CHEN D J, WANG F C, SHI H G, et al. Systematic evaluation of Co-free LnBaFe2O5+δ (Ln=lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2012, 78: 466.
|
[8] |
LEE D, KIM D, SON S J, et al. Simultaneous A- and B-site substituted double perovskite (AA’B2O5+δ) as a new high- performance and redox-stable anode material for solid oxide fuel cells. Journal of Power Sources, 2019, 434: 226743.
|
[9] |
WEN C Y, CHEN K, GUO D, et al. High performance and stability of PrBa0.5Sr0.5Fe2O5+δ symmetrical electrode for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2022, 386: 116048.
|
[10] |
IVANOV A I, KOLOTYGIN V A, TSIPIS E V, et al. Electrical conductivity, thermal expansion and electrochemical properties of perovskites PrBaFe2-xNixO5+δ. Russian Journal of Electrochemistry, 2018, 54: 533.
|
[11] |
LU C L, NIU B B, YI W D, et al. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x = 0, 0.2, 0.4) for solid oxide fuel cells and solid oxide electrolysis cells. Electrochimica Acta, 2020, 358: 136916.
|
[12] |
REN R Z, WANG Z H, MENG X G, et al. Boosting the electrochemical performance of Fe-based layered double perovskite cathodes by Zn2+ doping for solid oxide fuel cells. ACS Applied Materials & Interfaces, 2020, 12(21):23959.
|
[13] |
ZHU C J, YI C S, CHAO L M. Preparation and performance of Pr-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for IT-SOFCs. Journal of Rare Earths, 2011, 29(11):1070.
|
[14] |
TOBY B H. EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 2001, 34(2):210.
|
[15] |
LARSON A C, VON DREELE R B. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748, 2004.
|
[16] |
梁敬魁. 粉末衍射法测定晶体结构. 北京: 科学出版社, 2003: 798.
|
[17] |
COX-GALHOTRA R A, MCINTOSH S. Unreliability of simultaneously determining Kchem and Dchem via conductivity relaxation for surface-modified La0.6Sr0.4Co0.2Fe0.8O3-δ. Solid State Ionics, 2010, 181(31/32):1429.
|
[18] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18):3865.
DOI
PMID
|
[19] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990, 41(11):7892.
PMID
|
[20] |
LIU Y, QIN H B, LI M L, et al. Direct synthesis of Ce0.8Sm0.2-xZnxO2-δ electrolyte by Sol-Gel for IT-SOFC. Ionics, 2022, 28(10):4675.
|
[21] |
HAJIABADI M G, ZAMANIAN M, SOURI D. Williamson-Hall analysis in evaluation of lattice strain and the density of lattice dislocation for nanometer scaled ZnSe and ZnSe: Cu particles. Ceramics International, 2019, 45(11):14084.
|
[22] |
CAI C K, XIE M Y, XUE K, et al. Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells. Nano Research, 2022, 15: 3264.
|
[23] |
YAO C G, YANG J X, ZHANG H X, et al. Ca-doped PrBa1-xCaxCoCuO5+δ (x=0-0.2) as cathode materials for solid oxide fuel cells. Ceramics International, 2022, 48(6):7652.
|
[24] |
廖家轩, 潘笑风, 王洪全, 等. Ce掺杂Ba0.6Sr0.4TiO3薄膜表面结构XPS研究. 稀有金属材料与工程, 2009, 38(11): 1987.
|
[25] |
ZHANG Y, NIU B B, HAO X H, et al. Layered oxygen-deficient double perovskite GdBaFe2O5+δ as electrode material for symmetrical solid-oxide fuel cells. Electrochimica Acta, 2021, 370: 137807.
|
[26] |
LIU J C, JIN F J, YANG X, et al. YBaCo2O5+δ-based double- perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties. Electrochimica Acta, 2019, 297: 344.
|
[27] |
CALLISTER JR W D, RETHWISCH D G. Materials Science and Engineering: an Introduction. 10th edition. Hoboken: Wiley, 2018: 653-656.
|
[28] |
LIU Y H, WANG F Z, CHI B, et al. A stability study of impregnated LSCF-GDC composite cathodes of solid oxide fuel cells. Journal of Alloys and Compounds, 2013, 578: 37.
|
[29] |
WANG J L, YANG Z B, YANG K C, et al. Chromium deposition and poisoning on Ba0.9Co0.7Fe0.2Nb0.1O3-δ cathode of solid oxide fuel cells. Electrochimica Acta, 2018, 289: 503.
|
[30] |
LIU X, ZHANG L, ZHENG Y, et al. Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films. Advanced Science, 2019, 6(6):1801898.
|
[31] |
LIN T N, LEE M C, YANG R J, et al. Chemical state identification of Ce3+/Ce4+ in the Sm0.2Ce0.8O2-δ electrolyte for an anode-supported solid oxide fuel cell after long-term operation. Materials Letters, 2012, 81: 185.
|