Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (3): 337-344.DOI: 10.15541/jim20230428
Special Issue: 【能源环境】燃料电池(202409)
CHEN Zhengpeng1(), JIN Fangjun2,3(
), LI Mingfei1, DONG Jiangbo1, XU Renci1, XU Hanzhao4, XIONG Kai5, RAO Muming1, CHEN Chuangting1, LI Xiaowei2, LING Yihan2(
)
Received:
2023-09-20
Revised:
2023-11-16
Published:
2024-03-20
Online:
2023-11-28
Contact:
LING Yihan, professor. E-mail: lyhyy@cumt.edu.cn;About author:
CHEN Zhengpeng (1991-), male, Master. E-mail: chenzhengpeng@geg.com.cn
Supported by:
CLC Number:
CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells[J]. Journal of Inorganic Materials, 2024, 39(3): 337-344.
Fig. 4 (a) Thermal expansion behaviors and (b) thermal expansion coefficient curves of SCF-xSDC composite cathodes in the temperature range of 30-950 ℃ Colorful figures are available on website
Sample | Average TEC/(×10−6, K−1) | |
---|---|---|
SCF | 17.4 (30−400 ℃) | 28.8 (400−1000 ℃) |
SCF−20SDC | 15.6 (30−300 ℃) | 26.3 (300−950 ℃) |
SCF−30SDC | 15.0 (30−300 ℃) | 24.3 (300−950 ℃) |
SCF−40SDC | 14.5 (30−300 ℃) | 19.8 (300−950 ℃) |
SCF−50SDC | 12.5 (30−300 ℃) | 16.3 (300−950 ℃) |
Table 1 TEC of SCF-xSDC composite cathodes
Sample | Average TEC/(×10−6, K−1) | |
---|---|---|
SCF | 17.4 (30−400 ℃) | 28.8 (400−1000 ℃) |
SCF−20SDC | 15.6 (30−300 ℃) | 26.3 (300−950 ℃) |
SCF−30SDC | 15.0 (30−300 ℃) | 24.3 (300−950 ℃) |
SCF−40SDC | 14.5 (30−300 ℃) | 19.8 (300−950 ℃) |
SCF−50SDC | 12.5 (30−300 ℃) | 16.3 (300−950 ℃) |
Atom | Wyck. | S.O.F. | x/a | y/b | z/c | U/Å2 |
---|---|---|---|---|---|---|
Sr1 | 8c | 1 | 0.25 | 0.25 | 0.25 | 0.01083(1) |
Co1 | 4b | 1 | 0.5 | 0.5 | 0.5 | 0.01311(1) |
Fe1 | 4a | 1 | 0 | 0 | 0 | 0.0115(2) |
O1 | 24e | 1 | 0.2496(5) | 0 | 0 | 0.00995(2) |
Table S1 Atomic occupancy information (atomic parameters) of XRD refinement
Atom | Wyck. | S.O.F. | x/a | y/b | z/c | U/Å2 |
---|---|---|---|---|---|---|
Sr1 | 8c | 1 | 0.25 | 0.25 | 0.25 | 0.01083(1) |
Co1 | 4b | 1 | 0.5 | 0.5 | 0.5 | 0.01311(1) |
Fe1 | 4a | 1 | 0 | 0 | 0 | 0.0115(2) |
O1 | 24e | 1 | 0.2496(5) | 0 | 0 | 0.00995(2) |
Cathode | Electrolyte | T/℃ | Power density/(mW·cm-2) | Ref. |
---|---|---|---|---|
YBaCo2/3Fe2/3Cu2/3O5+δ | LSGM | 800 | 543 | [ |
SrCo0.7Fe0.2Ta0.1O3−δ | LSGM | 800 | 652.9 | [ |
PrBaCo2/3Fe2/3Cu2/3O5+δ | GDC | 800 | 659 | [ |
Pr1.9Ca0.1BaCoFeO5+δ | LSGM | 800 | 728 | [ |
SCF−40SDC | LSGM | 800 | 757 | This work |
Table S2 Electrochemical performance for cathode materials using hydrogen fuels
Cathode | Electrolyte | T/℃ | Power density/(mW·cm-2) | Ref. |
---|---|---|---|---|
YBaCo2/3Fe2/3Cu2/3O5+δ | LSGM | 800 | 543 | [ |
SrCo0.7Fe0.2Ta0.1O3−δ | LSGM | 800 | 652.9 | [ |
PrBaCo2/3Fe2/3Cu2/3O5+δ | GDC | 800 | 659 | [ |
Pr1.9Ca0.1BaCoFeO5+δ | LSGM | 800 | 728 | [ |
SCF−40SDC | LSGM | 800 | 757 | This work |
[1] |
GUO T M, DONG J B, CHEN Z P, et al. Enhanced compatibility and activity of high-entropy double perovskite cathode material for IT-SOFC. Journal of Inorganic Materials, 2023, 38(6): 693.
DOI |
[2] | HAN X, LING Y H, YANG Y, et al. Utilizing high entropy effects for developing chromium-tolerance cobalt-free cathode for solid oxide fuel cells. Advanced Functional Materials, 2023, 33(43): 202304728. |
[3] |
TAI L W, NASRALLAH M M, ANDERSON H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics, 1995, 76(3/4): 259.
DOI URL |
[4] |
TAI L W, NASRALLAH M M, ANDERSON H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics, 1995, 76(3/4): 273.
DOI URL |
[5] |
SHAO Z, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170.
DOI |
[6] |
WEI B, LU Z, LI S Y, et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for solid oxide fuel cells. Electrochemical and Solid State Letters, 2005, 8(8): A428.
DOI URL |
[7] |
ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17): 4876.
DOI URL |
[8] |
JIN F J, SHEN Y, WANG R, et al. Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234: 244.
DOI URL |
[9] |
LI J, SUN N, LIU X, et al. Investigation on Nd1-xCaxBaCo2O5+δ double perovskite as new oxygen electrode materials for reversible solid oxide cells. Journal of Alloys and Compounds, 2022, 913: 165245.
DOI URL |
[10] |
JIN F, XU H, LONG W, et al. Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln=Pr and Nd) as intermediate- temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243: 10.
DOI URL |
[11] |
LIU X, JIN F, SUN N, et al. Nd3+-deficiency double perovskite Nd1-xBaCo2O5+s and performance optimization as cathode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2021, 47(23): 33886.
DOI URL |
[12] |
BEZDICKA P, FOURNES L, WATTIAUX A, et al. Mössbauer characteristics of the Sr2CoFeO6 perovskite obtained by electrochemical oxidation. Solid State Communications, 1994, 91(7): 501.
DOI URL |
[13] |
MARTÍNEZ-LOPE MARÍA J, ALONSO JOSÉ A, CASAIS MARÍA T, et al. Preparation, crystal and magnetic structure of the double perovskites Ba2CoBO6 (B=Mo, W). European Journal of Inorganic Chemistry, 2002, 2002(9): 2463.
DOI URL |
[14] |
YOSHII K. Magnetic transition in the perovskite Ba2CoNbO6-δ. Journal of Solid State Chemistry, 2000, 151(2): 294.
DOI URL |
[15] |
COX D E, SHIRANE G, FRAZER B C. Neutron-diffraction study of antiferromagnetic Ba2CoWO6 and Ba2NiWO6. Journal of Applied Physics, 1967, 38(3): 1459.
DOI URL |
[16] | RAMMEH N, EHRENBERG H, FUESS H, et al. Structure and magnetic properties of the double-perovskites Ba2(B,Re)2O6 (B=Fe, Mn, Co and Ni). Physica Status Solidi (c), 2006, 3(9): 3225. |
[17] |
XIAO G L, LIU Q A, ZHAO F, et al. Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte. Journal of Electrochem Society, 2011, 158: B455.
DOI URL |
[18] |
MENG J L, LIU X J, HAN L, et al. Improved electrochemical performance by doping cathode materials Sr2Fe1.5Mo0.5-xTaxO6-δ (0≤x≤0.15) for solid state fuel cell. Journal of Power Sources, 2014, 247: 845.
DOI URL |
[19] |
DENG Z Q, SMIT J P, NIU H J, et al. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6-δ as a potential SOFC cathode. Chemistry of Materials, 2009, 21(21): 5154.
DOI URL |
[20] |
PRADHEESH R, NAIR H S, KUMAR C M N, et al. Observation of spin glass state in weakly ferromagnetic Sr2FeCoO6 double perovskite. Journal of Applied Physics, 2012, 111(5): 053905.
DOI URL |
[21] |
PRADHEESH R, NAIR HS, SANKARANARAYANAN V, et al. Large magnetoresistance and Jahn-Teller effect in Sr2FeCoO6. The European Physical Journal B, 2012, 85: 260.
DOI URL |
[22] |
PRADHEESH R, NAIR HS, SANKARANARAYANAN V, et al. Exchange bias and memory effect in double perovskite Sr2FeCoO6. Applied Physics Letters, 2012, 101(14): 142401.
DOI URL |
[23] |
CONG LG, HE TM, JI YA, et al. Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3-δ by glycine-nitrate combustion method. Journal of Alloys and Compounds. 2003, 348(1/2): 325.
DOI URL |
[24] |
WANG Y, JIN F, HAO X, et al. B-site-ordered Co-based double perovskites Sr2Co1-xNbxFeO5+δ as active and stable cathodes for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2020, 829: 154470.
DOI URL |
[25] |
WU H, QIAN Y, TAN W, et al. The theoretical search for half- metallic material: the non-stoichiometric perovskite oxide Sr2FeCoO6-δ. Applied Physics Letters, 2011, 99(12): 123116.
DOI URL |
[26] |
SHAO Z, XIONG G, TONG J, et al. Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Separation and Purification Technology, 2001, 25(1/2/3): 419.
DOI URL |
[27] |
SHAO Z, YANG W, CONG Y, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. Journal of Membrane Science, 2000, 172(1/2): 177.
DOI URL |
[28] |
LIU X, JIN F, LIU X, et al. Effect of calcium doping on Sm1-xCaxBaCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochim Acta, 2021, 390: 138830.
DOI URL |
[29] |
LING Y H, GUO T M, GUO Y Y, et al. New two-layer Ruddlesden-Popper cathode materials for protonic ceramics fuel cells. Journal of Advanced Ceramics, 2021, 10: 1052.
DOI |
[30] |
JIN F, LIU J, NIU B, et al. Evaluation and performance optimization of double-perovskite LaSrCoTiO5+δ cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(46): 21439.
DOI URL |
[31] |
GHAFFARI M, SHANNON M, HUI H, et al. Preparation, surface state and band structure studies of SrTi(1-x)Fe(x)O(3-δ) (x=0-1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. Surface Science, 2012, 606(5/6): 670.
DOI URL |
[32] |
PIKALOVA EY, MARAGOU VI, DEMINA AN, et al. The effect of co-dopant addition on the properties of Ln0.2Ce0.8O2-δ (Ln=Gd, Sm, La) solid-state electrolyte. Journal of Power Sources, 2008, 181(2): 199
DOI URL |
[33] |
JIN F, LIU J, SHEN Y, et al. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δ- Sm0.2Ce0.8O1.9 (LnPr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685: 483.
DOI URL |
[34] |
LIU B, SUNARSO J, ZHANG Y, et al. Highly oxygen non- stoichiometric BaSc0.25Co0.75O3-δ as a high-performance cathode for intermediate-temperature solid oxide fuel cells. ChemElectroChem, 2018, 5(5): 785.
DOI URL |
[35] |
BU Y F, DING D, LAI S Y, et al. Evaluation of La0.4Ba0.6Fe0.8Zn0.2O3-δ+Sm0.2Ce0.8O1.9 as a potential cobalt-free composite cathode for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2015, 275: 808.
DOI URL |
[36] |
LI S L, ZHANG L K, XIA T, et al. Synergistic effect study of EuBa0.98Co2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate- temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2019, 771: 513.
DOI URL |
[37] | STEELE BCH. Survey of materials selection for ceramic fuel cells II. cathodes and anodes. Solid State Ionics, 1996, 86: 1223. |
[1] | WANG Kunpeng, LIU Zhaolin, LIN Cunsheng, WANG Zhiyu. Development of Quasi-solid-state Na-ion Battery Based on Water-minimal Prussian Blue Cathode [J]. Journal of Inorganic Materials, 2024, 39(9): 1005-1012. |
[2] | PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911-919. |
[3] | YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2024, 39(7): 819-827. |
[4] | ZHANG Kun, WANG Yu, ZHU Tenglong, SUN Kaihua, HAN Minfang, ZHONG Qin. LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Property Manipulation and Its Effect on SOFC Electrochemical Performance [J]. Journal of Inorganic Materials, 2024, 39(4): 367-373. |
[5] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[6] | XUE Dingxi, YI Bingyao, LI Guojun, MA Shuai, LIU Keqin. Numerical Simulation of Thermal Stress in Solid Oxide Fuel Cells with Functional Gradient Anode [J]. Journal of Inorganic Materials, 2024, 39(11): 1189-1196. |
[7] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[8] | ZHANG Lun, LYU Mei, ZHU Jun. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2023, 38(9): 1044-1054. |
[9] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[10] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
[11] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[12] | TAN Shuyu, LIU Xiaoning, BI Zhijie, WAN Yong, GUO Xiangxin. Jointing of Cathode Coating and Interface Modification for Stabilizing Poly(ethylene oxide) Electrolytes Against High-voltage Cathodes [J]. Journal of Inorganic Materials, 2023, 38(12): 1466-1474. |
[13] | LI Tao, CAO Pengfei, HU Litao, XIA Yong, CHEN Yi, LIU Yuejun, SUN Aokui. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79-86. |
[14] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[15] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||