Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 656-662.DOI: 10.15541/jim20220511
Special Issue: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
KONG Guoqiang1(), LENG Mingzhe2(
), ZHOU Zhanrong2(
), XIA Chi1, SHEN Xiaofang2
Received:
2022-09-01
Revised:
2022-11-14
Published:
2022-12-09
Online:
2022-12-09
Contact:
LENG Mingzhe, lecturer. E-mail: lmz_198810@163.com;About author:
KONG Guoqiang (1986-), male, PhD, senior engineer. E-mail: kongguoqiang2010@163.com
Supported by:
CLC Number:
KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery[J]. Journal of Inorganic Materials, 2023, 38(6): 656-662.
Fig. 6 Performance of Na-ion batteries with NMTSbx as electrodes (a) Charging and discharging curves of Na-ion batteries with samples as electrodes for the first cycle at 1C; (b) Cycling performance of Na-ion batteries with samples as electrodes at 1C for 200 cycles; (c, d) Charging and discharging curves of Na-ion batteries with samples as electrodes for initial 3 cycles at 5C; (e) Coulombic efficiencies of Na-ion batteries with NMTSbx as electrodes for 200 cycles at 1C Colorful figures are available on website
Na | Ni | Mn | Ti | Sb | |
---|---|---|---|---|---|
NMTSb0 | 0.913 | 0.486 | 0.288 | 0.181 | 0 |
NMTSb0.02 | 0.924 | 0.471 | 0.284 | 0.186 | 0.023 |
NMTSb0.04 | 0.920 | 0.452 | 0.287 | 0.184 | 0.039 |
NMTSb0.06 | 0.929 | 0.435 | 0.279 | 0.184 | 0.061 |
Table S1 ICP-AES results of O3-NMTSbx (x=0, 0.02, 0.04, 0.06) (Stoichiometric ratio)
Na | Ni | Mn | Ti | Sb | |
---|---|---|---|---|---|
NMTSb0 | 0.913 | 0.486 | 0.288 | 0.181 | 0 |
NMTSb0.02 | 0.924 | 0.471 | 0.284 | 0.186 | 0.023 |
NMTSb0.04 | 0.920 | 0.452 | 0.287 | 0.184 | 0.039 |
NMTSb0.06 | 0.929 | 0.435 | 0.279 | 0.184 | 0.061 |
a/nm | b/nm | c/nm | V/nm3 | Rwp/% | Rp/% | |
---|---|---|---|---|---|---|
NMTSb0 | 0.29812 | 0.29812 | 1.600487 | 0.1232 | 4.92 | 5.53 |
NMTSb0.04 | 0.29790 | 0.29790 | 1.608391 | 0.1236 | 5.65 | 6.32 |
Table S2 Lattice parameters of materials with NMTSb0and NMTSb0.04
a/nm | b/nm | c/nm | V/nm3 | Rwp/% | Rp/% | |
---|---|---|---|---|---|---|
NMTSb0 | 0.29812 | 0.29812 | 1.600487 | 0.1232 | 4.92 | 5.53 |
NMTSb0.04 | 0.29790 | 0.29790 | 1.608391 | 0.1236 | 5.65 | 6.32 |
[1] |
MA A, YIN Z, WANG J, et al. Al-doped NaNi1/3Mn1/3Fe1/3O2 for high performance of sodium ion batteries. Ionics, 2020, 26(4):1797.
DOI |
[2] |
ZHOU D, ZENG C, XIANG J, et al. Review on Mn-based and Fe-based layered cathode materials for sodium-ion batteries. Ionics, 2022, 28(5): 2029.
DOI |
[3] |
YAO H R, ZHENG L, XIN S, et al. Air-stability of sodium-based layered-oxide cathode materials. Science China-Chemistry, 2022, 65(6):1076.
DOI |
[4] |
LIU Z, ZHOU C, LIU J, et al. Phase tuning of P2/O3-type layered oxide cathode for sodium ion batteries via a simple Li/F co-doping route. Chemical Engineering Journal, 2022, 431: 134273.
DOI URL |
[5] |
LI M, JAFTA CJ, GENG L, et al. Correlation of oxygen anion redox activity to in-plane honeycomb cation ordering in NaxNiyMn1-yO2 cathodes. Advanced Energy and Sustainability Research, 2022, 3(7):2200027.
DOI URL |
[6] |
LI J, LI H, HUANG Q, et al. Study on the mechanism of the influence of doping on the properties of cathode materials of sodium ion batteries. Progress in Chemistry, 2022, 34(4):857.
DOI |
[7] | CHANG Y X, YU L, XING X, et al. Ion substitution strategy of manganese-based layered oxide cathodes for advanced and low- cost sodium ion batteries. Chemical Record, 2022, 6: 202200122. |
[8] |
YIN Y X, WANG P F, YOU Y, et al. An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. Journal of Materials Chemistry A, 2016, 4: 17660.
DOI URL |
[9] |
TAN L, WU Q, LIU Z, et al. Ti-substituted O3-type layered oxide cathode material with high-voltage stability for sodium-ion batteries. Journal of Colloid and Interface Science, 2022, 622: 1037.
DOI PMID |
[10] | YUAN D D, WANG Y X, CAO Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Applied Materials Interfaces, 2015, 16(7):8585. |
[11] |
YUAN X G, GUO Y J, GAN L, et al. A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for Na-ion batteries. Advanced Functional Materials, 2022, 32(17):2111466.
DOI URL |
[12] | ZHANG Q, WANG Z, LI X, et al. Mitigating the voltage fading and air sensitivity of O3-type NaNi0.4Mn0.4Cu0.1Ti0.1O2 cathode material via La doping. Chemical Engineering Journal, 2022, 43: 133456. |
[13] | FIELDEN R, OBROVAC M N. Investigation of the NaNixMn1-xO2 (0≤x≤1) system for Na-ion battery cathode materials. Journal of the Electrochemical Society, 2015, 162(3):453. |
[14] |
MATHIYALAGAN K, KARUPPIAH K, PONNAIAH A, et al. Significant role of magnesium substitution in improved performance of layered O3-Na-Mn-Ni-Mg-O cathode material for developing sodium-ion batteries. International Journal of Energy Research, 2022, 46: 10656.
DOI URL |
[15] | ZHOU C, YANG L, ZHOU C, et al. Co-substitution enhances the rate capability and stabilizes the cyclic performance of O3-type cathode NaNi0.45-xMn0.25Ti0.3CoxO2 for sodium-ion storage at high voltage. ACS Applied Materials & Interfaces, 2019, 11(8):7906. |
[16] | CHENG Z, FAN X Y, YU L, et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angewandte Chemie International Edition, 2022, 61(19):17728. |
[17] | WALCZAK K, PLEWA A, GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Materials, 2022, 47: 10656. |
[18] |
DING Y, DING F, RONG X, et al. Mg-doped layered oxide cathode for Na-ion batteries. Chinese Physics B, 2022, 31(6):068201.
DOI |
[19] |
HUANG Q, FENG Y, WANG L, et al. Structure modulation strategy for suppressing high voltage P3-O1 phase transition of O3-NaMn(0.5)Ni(0.5)O2 layered cathode. Chemical Engineering Journal, 2022, 431: 133454.
DOI URL |
[20] |
WALCZAK K, PLEWA A, GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide: experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Materials, 2022, 47: 500.
DOI URL |
[21] |
SONG T, CHEN L, GASTOL D, et al. High-voltage stabilization of O3-type layered oxide for sodium-ion batteries by simultaneous tin dual modification. Chemistry of Materials, 2022, 34(9):4153.
DOI PMID |
[22] |
TANG W, SANVILLE E, HENKELMAN G. A grid-based Bader analysis algorithm without lattice bias. Journal of Physics Condensed Matter, 2009, 21(8):084204.
DOI URL |
[23] |
SANVILLE E, KENNY S D, SMITH R, et al. Improved grid-based algorithm for Bader charge allocation. Journal of computational chemistry, 2007, 28(5):899.
PMID |
[24] | 韦帅, 胡朝浩, 钟燕, 等. Sb掺杂LiBiO3电子结构的第一性原理计算. 桂林电子科技大学学报, 2013, 33(4):339. |
[25] |
XU Z, GUO X, WANG J Z, et al. Restraining the octahedron collapse in lithium and manganese rich NCM cathode toward suppressing structure transformation. Advanced Energy Materials, 2022, 12: 2201323.
DOI URL |
[26] | CHEN T R, SHENG T, WU Z G, et al. Cu2+ dual-doped layer- tunnel hybrid Na0.6Mn1-xCuxO2 as a cathode of sodium-ion battery with enhanced structure stability, electrochemical property, and air stability. ACS Applied Materials & Interfaces, 2018, 12(10):10147. |
[27] |
FENG T, LI L, SHI Q, et al. Evidence for the influence of polaron delocalization on the electrical transport in LiNi0.4+xMn0.4-xCo0.2O2. Physical Chemistry Chemical Physics, 2020, 22(4): 2054.
DOI URL |
[28] |
YADAV I, DUTTA S, PANDEY A, et al. Evolution of TiOx-SiOx nano-composite during annealing of ultrathin titanium oxide films on Si substrate. Ceramics International, 2020, 46: 19935.
DOI URL |
[29] | SUN Z, DENG X, CHOI J J, et al. Silicon surface passivation by laser processing a Sol-Gel TiOx thin film. ACS Applied Energy Materials, 2018, 1(10):5474. |
[30] | YU L, XING X X, ZHANG S Y, et al. Cation-disordered O3-Na0.8Ni0.6Sb0.4O2 cathode for high-voltage sodium-ion batteries. ACS Applied Materials & Interfaces, 2021, 13(28):32948. |
[31] | KOUTHAMAN M, KANNAN K, ARJUNAN P, et al. Layered O3-type Na9/10Cr1/2Fe1/2O2 as new cathode for rechargeable sodium-ion battery. Colloids and Surfaces A: Physicochemiacl and Engineering Aspects, 2022, 633: 127929. |
[32] |
RYU H H, HAN G, YU T Y, et al. Enhanced cycling stability of O3-type Na[Ni0.5Mn0.5]O2 cathode through Sn addition for sodium-ion batteries. Journal of Physical Chemistry C, 2021, 125(12):6593.
DOI URL |
[33] |
MENG X, ZHANG D, ZHAO Z, et al. O3-NaNi(0.47)Zn(0.03)Mn(0.5)O2 cathode material for durable Na-ion batteries. Journal of Alloys and Compounds, 2021, 887: 161366.
DOI URL |
[34] |
ANANG D A, BHANGE D S, ALI B, et al. New O3-type layer- structured Na0.80[Fe0.40Co0.40Ti0.20]O2 cathode material for rechargeable sodium-ion batteries. Materials (Basel), 2021, 14(9):2363.
DOI URL |
[35] |
LAMB J, MANTHIRAM A. Surface-modified Na(Ni0.3Fe0.4Mn0.3)O2 cathodes with enhanced cycle life and air stability for sodium-ion batteries. ACS Applied Energy Materials, 2021, 4(10):11735.
DOI URL |
[36] |
CHEN C, HUANG W, LI Y, et al. P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries. Nano Energy, 2021, 90: 106504.
DOI URL |
[37] | ZHENG Y M, HUANG X B, MENG X M, et al. Copper and zirconium codoped O3-type sodium iron and manganese oxide as the cobalt/nickel-free high-capacity and air-stable cathode for sodium-ion batteries. ACS Applied Materials & Interfaces, 2021, 13(38):45528. |
[1] | WANG Kunpeng, LIU Zhaolin, LIN Cunsheng, WANG Zhiyu. Development of Quasi-solid-state Na-ion Battery Based on Water-minimal Prussian Blue Cathode [J]. Journal of Inorganic Materials, 2024, 39(9): 1005-1012. |
[2] | CHENG Jie, ZHOU Yue, LUO Xintao, GAO Meiting, LUO Sifei, CAI Danmin, WU Xueyin, ZHU Licai, YUAN Zhongzhi. Construction and Electrochemical Properties of Yolk-shell Structured FeF3·0.33H2O@N-doped Graphene Nanoboxes [J]. Journal of Inorganic Materials, 2024, 39(3): 299-305. |
[3] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[4] | LI Tao, CAO Pengfei, HU Litao, XIA Yong, CHEN Yi, LIU Yuejun, SUN Aokui. NH4+ Assisted Interlayer-expansion of MoS2: Preparation and Its Zinc Storage Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 79-86. |
[5] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[6] | LI Wenbo, HUANG Minsong, LI Yueming, LI Chilin. CoS2 as Cathode Material for Magnesium Batteries with Dual-salt Electrolytes [J]. Journal of Inorganic Materials, 2022, 37(2): 173-181. |
[7] | WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308. |
[8] | WANG Jia-Hu, WANG Wen-Xin, DU Peng, HU Fang-Dong, JIANG Xiao-Lei, YANG Jian. Synthesis of Na3V2(PO4)2F3@V2O5-x as Cathode Material for Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(10): 1097-1102. |
[9] | LEE Sai-Xi, WANG Xue-Yin, GU Qing-Wen, XIA Yong-Gao, LIU Zhao-Ping, HE Jie. Tuning Electrochemical Performance through Non-stoichiometric Compositions in High-voltage Spinel Cathode Materials [J]. Journal of Inorganic Materials, 2018, 33(9): 993-1000. |
[10] | LUO Ling-Hong, HU Jia-Xing, CHENG Liang, XU Xu, WU Ye-Fan, LIN You-Chen. Performance of the Composite Cathode Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2-δ for Medium-low Temperature Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2018, 33(4): 441-446. |
[11] | LI Ling, LI Yun-Jiao, XU Bin, LU Wei-Sheng, SU Qian-Ye, CHEN Yong-Xiang, LI Lin. LiNixCoyMn1-x-yO2 Cathode Material Synthesized through Construction of E-pH Diagram and Its Electrochemical Performance [J]. Journal of Inorganic Materials, 2018, 33(3): 320-324. |
[12] | YANG Kun-Kun, YANG Shao-Hua, ZHAO Ping, ZHAO Yan-Long. Hydrothermal Synthesis of FeS2/Reduced Graphene Oxide Nanocomposite with Enhanced Discharge Performance for Thermal Battery [J]. Journal of Inorganic Materials, 2017, 32(7): 691-698. |
[13] | LI Wei, ZHANG Yuan-Jie, WANG Xuan-Peng, NIU Chao-Jiang, AN Qin-You, MAI Li-Qiang. Synthesis and Electrochemical Performance of LiMn0.6Fe0.4PO4/C Cathode for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2017, 32(5): 476-482. |
[14] | CHEN Li-Neng, YAN Meng-Yu, MEI Zhi-Wen, MAI Li-Qiang. Research Progress and Prospect of Aqueous Zinc Ion Battery [J]. Journal of Inorganic Materials, 2017, 32(3): 225-234. |
[15] | LI Xiang, GE Wu-Jie, WANG Hao, QU Mei-Zhen. Research Progress on the Capacity Fading Mechanisms of High-Nickel Ternary Layered Oxide Cathode Materials [J]. Journal of Inorganic Materials, 2017, 32(2): 113-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||