Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (4): 348-362.DOI: 10.15541/jim20240368
• REVIEW • Previous Articles Next Articles
ZHANG Jiguo(), WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien(
)
Received:
2024-08-12
Revised:
2024-11-05
Published:
2025-04-20
Online:
2024-11-29
Contact:
SUN Shien, professor. E-mail: shiensun@126.comAbout author:
ZHANG Jiguo (1988-), male, engineer. E-mail: zhangjiguo@zjenergy.com.cn
Supported by:
CLC Number:
ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries[J]. Journal of Inorganic Materials, 2025, 40(4): 348-362.
Charge carrier | Li+ | Na+ |
---|---|---|
Ionic radius/Å | 0.76 | 1.02 |
Electronic polarizability of ion/Å3 | 0.03 | 0.2-0.3 |
Relative atomic mass | 6.94 | 23.00 |
Ionization energy/eV | 5.39 | 5.14 |
Melting point/℃ | 180.5 | 97.7 |
Desolvation-energy in propylene carbonate/ (kJ·mol-1) | 215.8 | 158.2 |
E0/V(vs. SHE) | -3.04 | -2.71 |
Electronegativity | 0.98 | 0.93 |
Molar mass/(g·mol-1) | 6.9 | 23.0 |
Table 1 Comparison of characteristics of Li+ and Na+ as charge carriers[6-7]
Charge carrier | Li+ | Na+ |
---|---|---|
Ionic radius/Å | 0.76 | 1.02 |
Electronic polarizability of ion/Å3 | 0.03 | 0.2-0.3 |
Relative atomic mass | 6.94 | 23.00 |
Ionization energy/eV | 5.39 | 5.14 |
Melting point/℃ | 180.5 | 97.7 |
Desolvation-energy in propylene carbonate/ (kJ·mol-1) | 215.8 | 158.2 |
E0/V(vs. SHE) | -3.04 | -2.71 |
Electronegativity | 0.98 | 0.93 |
Molar mass/(g·mol-1) | 6.9 | 23.0 |
Fig. 2 Properties and structures of cathode materials for Na+ battery[10,13⇓⇓⇓ -17] (a) Properties of cathode materials[13-14]; (b) Classification and phase transition processes of layered materials[10]; (c) Structures of (c1) maricite NaFePO4[15], (c2) olivine NaFePO4[15] and (c3) NASICON-Na3V2(PO4)3[16]; (d) Framework of Prussian blue analogues[17]
Fig. 3 Strategies of structural optimization[34⇓⇓⇓-38,40,42⇓⇓ -45] (a1) Crystal structure schematic of MTS15 and (a2) cycling performance of MTS15, MTS25, MTS35, and MTS45[34]; (b1) Selected area electron diffraction pattern of P2-NCLMO[35]; (b2) In situ XRD patterns and corresponding volume variations of P2-NCLMO electrode in the first cycle at 0.2C[35]; (c) Calculated diffusion coefficient of Na+ in P2/O3-NaMnNiCuFeTiOF[36]; (d) High-resolution ex situ solid-state 23Na nuclear magnetic resonance spectra of Na3(VOPO4)2F/8% Ketjen black electrode under various states[37]; (e1) Bright field TEM image of nanosized Na4Fe3(PO4)2(P2O7) plates (NFPP-E) with carbon layers and (e2) volume change details during the charge/discharge process of NFPP-E[38]; (f) Cycling performance of full-cell based on MnHCF-S-170 cathode and soft carbon anode[40]; (g) Charge-discharge curves of KMF in different cycles at 0.1 A·g−1[42]; (h) Rate performances of pristine and HT samples under current densities from 0.1C to 20C[43]; (i) Unit volume of SC-HEPBA during charge and discharge process[44]; (j1) In-situ synchrotron-based powder XRD patterns with charge-discharge curves and (j2) cycling performance under 150 mA·g−1 and different temperatures[45]
Fig. 4 Strategies of chemical elements doping[16,46⇓⇓⇓⇓ -51] (a1) Initial charge-discharge curves of CNFM, Na0.89Li0.05Cu0.11Ni0.11Fe0.3Mn0.43O2 (LCNFM), and LCNFMF at 0.1C in a voltage range of 1.5-4.0 V with inset showing quantitative analysis results of reversible capacity contributions[46]; (a2) Changes of a/c-lattice parameters in three samples obtained by fitting in situ XRD data[46]; (b) Charge-discharge curves of Ni30MgTi[47]; (c1) STEM-HAADF image of interface between preconstructed layer and bulk phase and (c2) corresponding sodium ion diffusion coefficients of P2-NaMNNb calculated from GITT (galvanostatic intermittent titration technique) formula under 25 and −40 ℃[48]; (d) Cycling performance of NFVNP//HC at 5C in a voltage range of 1.5-3.8 V[49]; (e) Galvanostatic charge-discharge profiles at 0.5C in different voltage windows of 1.7-3.8 V and 1.7-4.3 V[16]; (f) Galvanostatic charge/discharge profiles of Fe-rich electrode at 0.1C from 1.5 V to 4.2 V[50]; (g) CV curves of NVTAP at 0.2 mV·s-1[51]
Fig. 5 International Industrialization process of sodium-ion batteries[83,85 -86,90 -91] (a) Worldwide development history of sodium-ion batteries[85]; (b1) Charge/discharge profiles of Faradion’s second-generation cathode material at 0.2C within different voltage windows[86]; (b2) Fast-charge performance of Faradion’s second-generation cathode material||HC 0.1 Ah full cell, charging at 4C (15 min total charge) without obvious capacity drop[86]; (b3) Faradion 3.0 Ah Na-ion pouch cell with 400 Wh battery pack system[86]; (c1) Discharge voltage profiles at different discharge rates as a function of relative energy accessed under 25 ℃ (1C/1C=100%) and (c2) cycling life measured on different versions of Tiamat Na-ion cells at 25 ℃ and 100% DOD[90]; (d1) Discharge voltage profiles of Natron cell at various discharge C rates as a function of percentage of discharge capacity accessed at 1C/1C and (d2) cycling performance at 25 ℃, 10C/10C, and 100% DOD performed in Natron’s lab with inset showing photo of ABB-Natron pluggable battery module containing 32 Natron’s 4.6 Ah sodium-ion pouch cells[91]; (e1) Cycling performance, (e2) rate capability at room temperature and (e3) safety evaluation of Novasis pouch cells[83]
Fig. 6 Domestic industrialization process of sodium-ion batteries[97,99⇓ -101,104 -105,107] (a) Companies dedicated to advancing sodium-ion batteries[97]; (b1) Typical first charge/discharge profiles of several Cu-based oxide cathode materials[99], (b2) rate capability at various constant rates from 0.1C to 1C[100] and (b3) first 30 kW/100 kWh Na-ion battery system for energy storage[101]; (c1) Cycling performance of Na1+xFe[Fe(CN)6] electrodes[104], (c2) digital images of synthesis of Prussian white Na2−xFeFe(CN)6 in 100 L reactor and powder of final product and (c3) cycling performance of pouch full cell[105]; (d1-d3) Practical application of sodium-ion batteries with polyanionic materials as cathodes[107]
[1] | LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries. Adv. Mater., 2018, 30(33):1800561. |
[2] | HU M, HUANG L, LI H, et al. Research progress on hard carbon anode for Li/Na-ion batteries. J. Inorg. Mater., 2024, 39(1):32. |
[3] | YANG B, QIAN Y, LI Q, et al. Critical summary and perspectives on state-of-health of lithium-ion battery. Renew. Sust. Energ. Rev., 2024, 190: 114077. |
[4] | SHAO R, SUN Z, WANG L, et al. Resolving the origins of superior cycling performance of antimony anode in sodium-ion batteries: a comparison with lithium-ion batteries. Angew. Chem. Int. Ed., 2024, 136(11):e202320183. |
[5] | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater., 2018, 3(4):18013. |
[6] | KUBOTA K, DAHBI M, HOSAKA T, et al. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec., 2018, 18(4):459. |
[7] | USISKIN R, LU Y, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater., 2021, 6(11):1020. |
[8] |
WANG J, ZHU Y F, SU Y, et al. Routes to high-performance layered oxide cathodes for sodium-ion batteries. Chem. Soc. Rev., 2024, 53(8):4230.
DOI PMID |
[9] | ZHANG H, GAO Y, LIU X, et al. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems. Adv. Energy Mater., 2023, 13(23):2300149. |
[10] | LIU Q, HU Z, CHEN M, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small, 2019, 15(32):1805381. |
[11] |
GUPTA P, PUSHPAKANTH S, HAIDER M A, et al. Understanding the design of cathode materials for Na-ion batteries. ACS Omega, 2022, 7(7):5605.
DOI PMID |
[12] | LI Y, CHEN M, LIU B, et al. Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy Mater., 2020, 10(27):2000927. |
[13] | DENG J, LUO W B, CHOU S L, et al. Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater., 2018, 8(4):1701428. |
[14] | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future. Chem. Soc. Rev., 2017, 46: 3529. |
[15] | HAO Z, SHI X, YANG Z, et al. The distance between phosphate- based polyanionic compounds and their practical application for sodium-ion batteries. Adv. Mater., 2024, 36(7):2305135. |
[16] | ZHOU Y, XU G, LIN J, et al. Reversible multielectron redox chemistry in a NASICON-type cathode toward high-energy- density and long-life sodium-ion full batteries. Adv. Mater., 2023, 35(44):2304428. |
[17] | LU Y, WANG L, CHENG J, et al. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun., 2012, 48(52):6544. |
[18] | WANG J, DREYER S L, WANG K, et al. P2-type layered high- entropy oxides as sodium-ion cathode materials. Mater. Futures, 2022, 1(3):172. |
[19] | ZHOU P, CHE Z, MA F, et al. Designing water air-stable P2-layered cathodes with delayed P2-O2 phase transition by composition and structure engineering for sodium-ion batteries at high voltage. Chem. Eng. J., 2020, 420: 127667. |
[20] | SUN Y K. Direction for commercialization of O3-type layered cathodes for sodium-ion batteries. ACS Energy Lett., 2020, 5(4):1278. |
[21] | ZHANG C, GAO R, ZHENG L, et al. New insights into the roles of Mg in improving the rate capability and cycling stability of O3-NaMn0.48Ni0.2Fe0.3Mg0.02O2 for sodium-ion batteries. ACS Appl. Mater. Interfaces, 2018, 10(13):10819. |
[22] | GAO R M, ZHENG Z J, WANG P F, et al. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Storage Mater., 2020, 30: 9. |
[23] | LIU J, KAN W H, LING C D. Insights into the high voltage layered oxide cathode materials in sodium-ion batteries: structural evolution and anion redox. J. Power Sources, 2021, 481: 229139. |
[24] | XU C, ZHAO J, YANG C, et al. Polyanionic cathode materials for practical Na-ion batteries toward high energy density and long cycle life. ACS Cent. Sci., 2023, 9(9):1721. |
[25] | LI Y, HE W X, ZHENG X Y, et al. Prussian blue cathode materials for aqueous sodium-ion batteries: preparation and electrochemical performance. J. Inorg. Mater., 2019, 34(4):365. |
[26] |
SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc., 2015, 137(7):2658.
DOI PMID |
[27] | WANG Y, FENG Z, CUI P, et al. Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nat. Commun., 2021, 12: 13. |
[28] | BERSUKER I B. Jahn-Teller and pseudo-Jahn-Teller effects: from particular features to general tools in exploring molecular and solid state properties. Chem. Rev., 2020, 121(3):1463. |
[29] | ESHETU G G, ELIA G A, ARMAND M, et al. Electrolytes and interphases in sodium-based rechargeable batteries: recent advances and perspectives. Adv. Energy Mater., 2020, 10(20):2000093. |
[30] | WANG Q, MARIYAPPAN S, ROUSSE G, et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater., 2021, 20: 353. |
[31] | REN M, ZHAO S, GAO S, et al. Homeostatic solid solution in layered transition-metal oxide cathodes of sodium-ion batteries. J. Am. Chem. Soc., 2022, 145(1):224. |
[32] | KIM Y, PARK H, SHIN K, et al. Rational design of coating ions via advantageous surface reconstruction in high-nickel layered oxide cathodes for lithium-ion batteries. Adv. Energy Mater., 2021, 11(38):2101112. |
[33] | ZHANG R, YANG S, LI H, et al. Air sensitivity of electrode materials in Li/Na ion batteries: issues and strategies. InfoMat, 2022, 4(6):e12305. |
[34] | WANG H, GAO X, ZHANG S, et al. High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano, 2023, 17(13):12530. |
[35] | WANG Y, ZHAO X, JIN J, et al. Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes via reductive coupling mechanism. J. Am. Chem. Soc., 2023, 145(41):22708. |
[36] | ZHOU P, CHE Z, LIU J, et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater., 2023, 57: 618. |
[37] | SHEN X, ZHOU Q, HAN M, et al. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun., 2021, 12: 2848. |
[38] | CHEN M, HUA W, XIAO J, et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun., 2019, 10: 1480. |
[39] | WANG K, LIU Z, LIN C, et al. Development of quasi-solid-state Na-ion battery based on water-minimal Prussian blue cathode. J. Inorg. Mater., 2024, 39(9):1005. |
[40] | PENG J, GAO Y, ZHANG H, et al. Ball milling solid-state synthesis of highly crystalline Prussian blue analogue Na2-xMnFe(CN)6 cathodes for all-climate sodium-ion batteries. Angew. Chem. Int. Ed., 2022, 61(32):e202205867. |
[41] | SHANG Y, LI X, SONG J, et al. Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: suppressing Jahn-Teller distortion for ultrastable sodium storage. Chem, 2020, 6(7): 1804. |
[42] |
LI X, SHANG Y, YAN D, et al. Topotactic epitaxy self-assembly of potassium manganese hexacyanoferrate superstructures for highly reversible sodium-ion batteries. ACS Nano, 2022, 16(1):453.
DOI PMID |
[43] | WANG W, GANG Y, PENG J, et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries. Adv. Funct. Mater., 2022, 32(25):2111727. |
[44] | HUANG Y, ZHANG X, JI L, et al. Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high- entropy approach. Energy Storage Mater., 2023, 58: 1. |
[45] | PENG J, ZHANG B, HUA W, et al. A disordered Rubik's cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan. Angew. Chem. Int. Ed., 2023, 62(6):e202215865. |
[46] |
DING F, WANG H, ZHANG Q, et al. Tailoring electronic structure to achieve maximum utilization of transition metal redox for high-entropy Na layered oxide cathodes. J. Am. Chem. Soc., 2023, 145(25):13592.
DOI PMID |
[47] | LIU Z, WU J, ZENG J, et al. Co-free layered oxide cathode material with stable anionic redox reaction for sodium-ion batteries. Adv. Energy Mater., 2023, 13(29):2301471. |
[48] | SHI Q, QI R, FENG X, et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries. Nat. Commun., 2022, 13: 3205. |
[49] | ZHAO Q Y, LI J Y, CHEN M J, et al. Bimetal substitution enabled energetic polyanion cathode for sodium-ion batteries. Nano Lett., 2022, 22(23):9685. |
[50] | WANG J, ZENG W, ZHU J, et al. Fe-rich pyrophosphate with prolonged high-voltage-plateaus and suppressed voltage decay as sodium-ion battery cathode. Nano Energy, 2023, 116: 108822. |
[51] | LI Z, SUN C, LI M, et al. Na2.5VTi0.5Al0.5(PO4)3 as long lifespan cathode for fast charging sodium-ion batteries. Adv. Funct. Mater., 2024, 34(23):2315114. |
[52] | BI Z, HUANG W, MU S, et al. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy, 2021, 90: 106498. |
[53] | SHI R, LIU K, ZUO M, et al. Interface-reinforced solid-state electrochromic Li-ion batteries enabled by in-situ liquid-solid transitional plastic glues. J. Energy Chem., 2024, 98: 96. |
[54] | BI Z, SUN Q, JIA M, et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries. Adv. Funct. Mater., 2022, 32(52):2208751. |
[55] | BI Z, SHI R, LIU X, et al. In situ conversion reaction triggered alloy@antiperovskite hybrid layers for lithiophilic and robust lithium/garnet interfaces. Adv. Funct. Mater., 2023, 33(43):2307701. |
[56] | HUANG G, KONG Q, YAO W, et al. High proportion of active nitrogen-doped hard carbon based on mannich reaction as anode material for high-performance sodium-ion batteries. ChemSusChem, 2023, 16(7):e202202070. |
[57] | HOU Z, ZHANG X, CHEN J, et al. Towards high-performance aqueous sodium ion batteries: constructing hollow NaTi2(PO4)3@C nanocube anode with Zn metal-induced pre-sodiation and deep eutectic electrolyte. Adv. Energy Mater., 2022, 12(14):2104053. |
[58] | CHE C, WU F, LI Y, et al. Challenges and breakthroughs in enhancing temperature tolerance of sodium-ion batteries. Adv. Mater., 2024, 36(28):2402291. |
[59] | ZHANG Y, XU J, LI Z, et al. All-climate aqueous Na-ion batteries using “water-in-salt” electrolyte. Sci. Bull., 2022, 67(2):161. |
[60] | LIU X, ZHENG X, QIN X, et al. Temperature-responsive solid- electrolyte-interphase enabling stable sodium metal batteries in a wide temperature range. Nano Energy, 2022, 103: 107746. |
[61] | LIU M, YANG Z, SHEN Y, et al. Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. J. Mater. Chem. A, 2021, 9(9):5639. |
[62] | MU J J, LIU Z M, LAI Q S, et al. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors. Energy Mater., 2022, 2(6):200043. |
[63] | LIU T, XIANG P, LI Y, et al. In situ forming Na-Sn alloy/Na2S interface layer for ultrastable solid state sodium batteries. Adv. Funct. Mater., 2024, 34(32):2316528. |
[64] | TIAN K, HE H, LI X, et al. Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries. J. Mater. Chem. A, 2022, 10(28):14943. |
[65] | DING F, ZHAO C, XIAO D, et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc., 2022, 144(18):8286. |
[66] | TANG Y, ZHANG Q, ZUO W, et al. Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries. Nat. Sustain., 2024, 7(3):348. |
[67] | FENG J, LIU Y, FANG D, et al. Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries. Nano Energy, 2023, 118: 109030. |
[68] | MA S, ZOU P, XIN H L. Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability. Mater. Today Energy, 2023, 38: 101446. |
[69] | MU J, CAI T, DONG W, et al. Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries. Chem. Eng. J., 2023, 471: 144403. |
[70] | ZHOU Y, XU G, LIN J, et al. A multicationic-substituted configurational entropy-enabled NASICON cathode for high- power sodium-ion batteries. Nano Energy, 2024, 128: 109812. |
[71] | LI M, SUN C, YUAN X, et al. A configuration entropy enabled high-performance polyanionic cathode for sodium-ion batteries. Adv. Funct. Mater., 2024, 34(21):2314019. |
[72] | SHEN X, HAN M, LI X, et al. Regulated synthesis of α-NaVOPO4 with an enhanced conductive network as a high-performance cathode for aqueous Na-ion batteries. ACS Appl. Mater. Interfaces, 2022, 14(5):6841. |
[73] | LING M, JIANG Q, LI T, et al. The mystery from tetragonal NaVPO4F to monoclinic NaVPO4F: crystal presentation, phase conversion, and Na-storage kinetics. Adv. Energy Mater., 2021, 11(21):2100627. |
[74] | FAN Z, SONG W, YANG N, et al. Insights into the phase purity and storage mechanism of nonstoichiometric Na3.4Fe2.4(PO4)1.4P2O7 cathode for high-mass-loading and high-power-density sodium-ion batteries. Angew. Chem. Int. Ed., 2024, 63(8):e202316957. |
[75] | ZHANG L M, HE X D, WANG S, et al. Hollow-sphere-structured Na4Fe3(PO4)2(P2O7)/C as a cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces, 2021, 13(22):25972. |
[76] | TANG Y, LI W, FENG P, et al. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv. Funct. Mater., 2020, 30(10):1908754. |
[77] | PAN T Y, WU C Y, NI C S, et al. Improvement in cycling stability of Prussian blue analog-based aqueous sodium-ion batteries by ligand substitution and electrolyte optimization. Electrochim. Acta, 2022, 427: 140778. |
[78] | XU Z, SUN Y, XIE J, et al. Scalable preparation of Mn/Ni binary Prussian blue as sustainable cathode for harsh-condition-tolerant sodium- ion batteries. ACS Sustainable Chem. Eng., 2022, 10(40):13277. |
[79] | XU Z, SUN Y, XIE J, et al. High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries. Mater. Today Sustain., 2022, 18: 100113. |
[80] | SHEN L, JIANG Y, LIU Y, et al. High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem. Eng. J., 2020, 388: 124228. |
[81] | TANG Y, WANG L, HU J, et al. Epitaxial nucleation of NaxFeFe(CN)6@rGO with improved lattice regularity as ultrahigh-rate cathode for sodium-ion batteries. Adv. Energy Mater., 2024, 14(7):2303015. |
[82] | ANG C, LU W, ZHANG Y, et al. Toward ultrahigh rate and cycling performance of cathode materials of sodium ion battery by introducing a bicontinuous porous structure. Adv. Mater., 2024, 36(26):2402005. |
[83] | BAUER A, SONG J, VAIL S, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater., 2018, 8(17):1702869. |
[84] | GOIKOLEA E, PALOMARES V, WANG S, et al. Na-ion batteries— approaching old and new challenges. Adv. Energy Mater., 2020, 10(44):2002055. |
[85] | GAO Y, ZHANG H, PENG J, et al. A 30-year overview of sodium-ion batteries. Carbon Energy, 2024, 6(6):e464. |
[86] | ZHAO L, ZHANG T, LI W, et al. Engineering of sodium-ion batteries: opportunities and challenges. Engineering, 2022, 24: 172. |
[87] | RUDOLA A, RENNIE A J, HEAP R, et al. Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook. J. Mater. Chem. A, 2021, 9(13):8279. |
[88] | SAYERS R, BARKER J, HEAP R. Compositions containing doped nickelate compounds: WO2015177544A1. 2015-05-20. |
[89] | EDELSTEIN S. Faradion electric bike: prototype powered by sodium-ion batteries. (2015-05-24)[2024-08-06]. http://www.greencarreports.com/news/1098434_faradion-electric-bike-prototype-powered-bysodium-ion-batteries. |
[90] | HE M, MEJDOUBI A E, CHARTOUNI D, et al. High power NVPF/HC-based sodium-ion batteries. J. Power Sources, 2023, 588: 233741. |
[91] | HE M, DAVIS R, CHARTOUNI D, et al. Assessment of the first commercial Prussian blue based sodium-ion battery. J. Power Sources, 2022, 548: 232036. |
[92] | LIU Q, HU Z, CHEN M, et al. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater., 2020, 30(14):1909530. |
[93] | KUZE S, KAGEURA J I, MATSUMOTO S, et al. Development of a sodium ion secondary battery. Sumitomo Kagaku, 2013, 2013: 1. |
[94] | RS2E network. French researchers develop sodium-ion battery in 18650 format;performance comparable to Li-ion. (2015-11-27) [2024-08-06]. https://www.greencarcongress.com/2015/11/20151127-rs2e.html. |
[95] | HALL N, BOULINEAU S, CROGUENNEC L, et al. Method for preparing a Na3V2(PO4)2F3 particulate material: WO2017/064189A1. 2017-04-20. |
[96] |
WANG L, SONG J, QIAO R, et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc., 2015, 137(7):2548.
DOI PMID |
[97] | LU X, LI S, LI Y, et al. From lab to application: challenges and opportunities in achieving fast charging with polyanionic cathodes for sodium-ion batteries. Adv. Mater., 2024, 36(36):2407359. |
[98] | XU S Y, WU X Y, LI Y M, et al. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chin. Phys. B, 2014, 23(11):118202. |
[99] | MU L, XU S, LI Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater., 2015, 27(43):6928. |
[100] | LI Y, HU Y S, QI X, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater., 2016, 5: 191. |
[101] | HU Y S, KOMABA S, FORSYTH M, et al. A new emerging technology: Na-ion batteries. Small Methods, 2019, 3(4):1900184. |
[102] |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索. 储能科学与技术, 2020, 9(2):515.
DOI |
[103] | 电池网. Natrium energy signed a contract of 80,000 mt of sodium-ion battery cathode material project, further accelerating the industrialisation. (2022-06-14)[2024-08-06]. https://news.metal.com/newscontent/101860656/natrium-energy-signed-a-contract-of-80000-mt-of-sodiumion-battery-cathode-material-project-further-accelerating-the-industrialisation/. |
[104] | LI W J, CHOU S L, WANG J Z, et al. Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries. Chem. Mater., 2015, 27(6): 1997. |
[105] |
WANG W, GANG Y, HU Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat. Commun., 2020, 11(1):980.
DOI PMID |
[106] | Contemporary Amperex Technology Co., Ltd. The first-generation sodium-ion battery launch event. (2021-07-29)[2024-08-06]. https://www.catl.com/en/news/685.html. |
[107] | 邱艳玲, 韩建鑫, 王雨霄. 我部研制出48V/10Ah磷酸盐基钠离子电池储能系统并成功开展应用示范. (2021-11-24)[2024-08-06]. http://energystorage.dicp.ac.cn/info/1061/5239.htm. |
[1] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[2] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[3] | YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(3): 329-336. |
[4] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[5] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[6] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[7] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[8] | ZHU Zhijie, SHEN Mingyuan, WU Tao, LI Wencui. Inhibition of P2-O2 Phase Transition for P2-Na2/3Ni1/3Mn2/3O2 as Cathode of Sodium-ion Battery via Synergetic Substitution of Cu and Mg [J]. Journal of Inorganic Materials, 2025, 40(2): 184-195. |
[9] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[10] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[11] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[12] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[13] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[14] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[15] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||