Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (12): 1397-1403.DOI: 10.15541/jim20240202
Special Issue: 【能源环境】钙钛矿(202412); 【能源环境】太阳能电池(202412)
• RESEARCH LETTER • Previous Articles Next Articles
LIU Suolan1,2(), LUAN Fuyuan1,3, WU Zihua3,4, SHOU Chunhui5, XIE Huaqing3,4, YANG Songwang1,2(
)
Received:
2024-04-18
Revised:
2024-06-20
Published:
2024-07-16
Online:
2024-07-16
Contact:
YANG Songwang, professor. E-mail: swyang@mail.sic.ac.cnAbout author:
LIU Suolan (1999-), female, Master candidate. E-mail: liusuolan21@mails.ucas.ac.cn
Supported by:
CLC Number:
LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403.
Fig. 1 SEM, AFM morphologies, and transmittance of FTO glass substrate, SC SnO2 and IG SnO2 films (a-c) Top-view SEM images of (a) FTO glass substrate, (b) SC SnO2 and (c) IG SnO2 films; (d, e) Cross-sectional SEM images of (d) SC SnO2 and (e) IG SnO2 films; (f) Transmittance spectra of SC SnO2, IG SnO2 films and FTO glass substrate; (g-i) AFM images of (g) FTO glass substrate, (h) SC SnO2 and (i) IG SnO2 films with insets showing the corresponding 3D images
Fig. 2 SEM morphologies, photoluminescence properties, and grain size distributions of perovskite films (a, b) Cross-sectional SEM images of perovskite films deposited on (a) SC SnO2 and (b) IG SnO2 films; (c) Steady-state PL spectra of perovskite films deposited on SC SnO2 and IG SnO2 films; (d, e) Top-view SEM images of perovskite films deposited on (d) SC SnO2 and (e) IG SnO2 films; (f) Grain size distribution histograms of perovskite films corresponding to (d, e)
Photovoltaic performance of PSCs based on SC SnO2 and IG SnO2 films (a) J-V curves; (b) IPCE spectra; (c-f) Statistical distributions of (c) PCE, (d) VOC, (e) JSC, and (f) FF; (g) TPC decay curves; (h) TPV decay curves; (i) VOC dependent curves of the light intensity
Sample | VOC/V | JSC/(mA·m-2) | FF/% | PCE/% |
---|---|---|---|---|
SC SnO2 | 1.0950±0.0165 | 24.910±0.156 | 73.650±1.278 | 20.080±0.376 |
IG SnO2 | 1.1170±0.0126 | 25.060±0.079 | 76.650±0.809 | 21.450±0.321 |
Table S1 Photovoltaic parameters of the perovskite solar cells
Sample | VOC/V | JSC/(mA·m-2) | FF/% | PCE/% |
---|---|---|---|---|
SC SnO2 | 1.0950±0.0165 | 24.910±0.156 | 73.650±1.278 | 20.080±0.376 |
IG SnO2 | 1.1170±0.0126 | 25.060±0.079 | 76.650±0.809 | 21.450±0.321 |
Curve | Parameter | SC SnO2 | IG SnO2 |
---|---|---|---|
TPC | τ/μs | 7.45 | 4.23 |
TPV | A1 | 0.586 | 0.617 |
τ1/ms | 0.232 | 0.094 | |
A2 | 0.244 | 0.197 | |
τ2/ms | 1.548 | 1.539 | |
τavg/ms | 1.199 | 1.307 |
Table S2 Fitting parameters of the TPC and TPV curves
Curve | Parameter | SC SnO2 | IG SnO2 |
---|---|---|---|
TPC | τ/μs | 7.45 | 4.23 |
TPV | A1 | 0.586 | 0.617 |
τ1/ms | 0.232 | 0.094 | |
A2 | 0.244 | 0.197 | |
τ2/ms | 1.548 | 1.539 | |
τavg/ms | 1.199 | 1.307 |
[1] | HUANG Z, BAI Y, HUANG X, et al. Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 2023, 623(7987):531. |
[2] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17):6050.
DOI PMID |
[3] | PARK J, KIM J, YUN H S, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 616(7958):724. |
[4] | LIANG Z, ZHANG Y, XU H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624(7992):557. |
[5] | WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability. Adv. Funct. Mater., 2019, 29(47):1808843. |
[6] | HUI W, KANG X, WANG B, et al. Stable electron-transport-layer- free perovskite solar cells with over 22% power conversion efficiency. Nano Lett., 2023, 23(6): 2195. |
[7] | LIU Q, LIU Y, LIU H, et al. Magnetron sputtering Zn2SnO4 electron-transport layer for all room-temperature-processed perovskite solar cells. Sol. RRL, 2024, 8(4):2300926. |
[8] | KIMATA H, YAMAGUCHI S, GOTANDA T, et al. Open-circuit- voltage improvement mechanism of perovskite solar cells revealed by operando spin observation. ACS Appl. Mater. Interfaces, 2023, 15(50):58539. |
[9] | GOU Y, WANG H, LI Y, et al. Developing a gradient titanium dioxide/amorphous tantalum nitride electron transporting layer for efficient and stable perovskite solar cells. Inorg. Chem. Front., 2023, 10(22):6622. |
[10] | LIU J, YIN Y, HE B, et al. Focusing on the bottom contact: carbon quantum dots embedded SnO2 electron transport layer for high- performance and stable perovskite solar cells. Mat. Today Phys., 2023, 33: 101041. |
[11] | HU W, ZHOU W, LEI X, et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater., 2019, 31(8):1806095. |
[12] | JIANG Z, HE Z, MA S, et al. Effect of yttrium-incorporated TiO2 electron transport layer on the photovoltaic performance of triple- cation perovskite solar cells. J. Phys. Chem. C, 2023, 127(39):19432. |
[13] | HE J, DING T, WU W. Surface lattice perturbation of electron transport layer reducing oxygen vacancies for positive photovoltaic effect. Sol. RRL, 2022, 6(10):2200226. |
[14] | LI S, YANG Y, SU K, et al. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells. Chin. J. Chem. Eng., 2022, 50: 29. |
[15] | YOU S, ZENG H, KU Z, et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater., 2020, 32(43):2003990. |
[16] | LIN L, JONES T W, YANG T C J, et al. Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater., 2021, 31(5):2008300. |
[17] | BU T, LI J, ZHENG F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun., 2018, 9(1):4609. |
[18] | LEE H B, JEON M K, KUMAR N, et al. Boosting the efficiency of SnO2-triple cation perovskite system beyond 20% using nonhalogenated antisolvent. Adv. Funct. Mater., 2019, 29(32):1903213. |
[19] | MÉNDEZ P F, MUHAMMED S K M, BAREA E M, et al. Analysis of the UV-Ozone-treated SnO2 electron transporting layer in planar perovskite solar cells for high performance and reduced hysteresis. Sol. RRL, 2019, 3(9):1900191. |
[20] | ZHOU J, ZHOU R, ZHU J, et al. Colloidal SnO2-assisted CdS electron transport layer enables efficient electron extraction for planar perovskite solar cells. Sol. RRL, 2021, 5(9):2100494. |
[21] | LIU H, CHEN Z, WANG H, et al. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells. J. Mater. Chem. A, 2019, 7(17):10636. |
[22] | SONG K K, ZOU X P, ZHANG H Y, et al. Effect of SnO2 colloidal dispersion solution concentration on the quality of perovskite layer of solar cells. Coatings, 2021, 11(5):591. |
[23] | CORREA BAENA J P, STEIER L, TRESS W, et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci., 2015, 8(10):2928. |
[24] | ANARAKI E H, KERMANPUR A, MAYER M T, et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Lett., 2018, 3(4):773. |
[25] | DING B, HUANG S Y, CHU Q Q, et al. Low-temperature SnO2-modified TiO2 yields record efficiency for normal planar perovskite solar modules. J. Mater. Chem. A, 2018, 6(22):10233. |
[26] | BU T, LIU X, ZHOU Y, et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci., 2017, 10(12):2509. |
[27] | WU C, FANG W, CHENG Q, et al. MXene-regulated perovskite vertical growth for high-performance solar cells. Angew. Chem. Int. Ed., 2022, 61(43):e202210970. |
[28] | ZOU Y, EICHHORN J, RIEGER S, et al. Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells. Nano Energy, 2023, 112: 108449. |
[29] | DOU J, ZHU C, WANG H, et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater., 2021, 33(39):2102947. |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[6] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[7] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[8] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[9] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[10] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[11] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[12] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[13] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[14] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[15] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||