Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (12): 1404-1412.DOI: 10.15541/jim20240204
Special Issue: 【能源环境】储能电池(202412); 【材料计算】计算材料(202412)
• RESEARCH LETTER • Previous Articles
ZHOU Jingyu1,2,3(), LI Xingyu2, ZHAO Xiaolin2,3, WANG Youwei2,3, SONG Erhong2,3(
), LIU Jianjun1,2,3
Received:
2024-04-22
Revised:
2024-06-15
Published:
2024-07-16
Online:
2024-07-16
Contact:
SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cnAbout author:
ZHOU Jingyu (1998-), male, Master candidate. E-mail: zhoujingyu211@mails.ucas.ac.cn
Supported by:
CLC Number:
ZHOU Jingyu, LI Xingyu, ZHAO Xiaolin, WANG Youwei, SONG Erhong, LIU Jianjun. Rate and Cycling Performance of Ti and Cu Doped β-NaMnO2 as Cathode of Sodium-ion Battery[J]. Journal of Inorganic Materials, 2024, 39(12): 1404-1412.
Fig. 1 Screening of doped atoms in β-NaMnO2 (a) Schematic crystal structure of β-NaMnO2 doped by 3d transition metal atoms; (b) -ICOHP of Na-O and TM-O (TM=Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn); (c) -COHP of Na-O and Cu-O in Cu doped β-NaMnO2; (d) -COHP of Na-O and Ti-O in Ti doped β-NaMnO2. Colorful figures are available on website
Fig. 2 Structure and morphology of β-MTC811 (a) Crystal structure modeling of β-MTC811 that obtained by calculation; (b) Comparison of calculated and experimental XRD patterns of β-MTC811; (c) SEM image of β-MTC811; (d) EDS mappings of β-MTC811; (e) TEM image of β-MTC811; (f) Enlarged image of zig-zag layered structure in (e)
Fig. 3 Electrochemical performance of β-MTC811 cathode (a-c) Charge/discharge curves of (a) β-MTC811, (b) β-MTC721 and (c) β-MTC712 at 0.2C; (d) Cycling performance, (e) rate performance and (f) dQ/dV curves of β-MTC811 Colorful figures are available on website
Fig. 4 Electrochemical reaction mechanisms (a) Mn2p and (b) Cu2p XPS spectra of β-MTC811 in different charging and discharging states. Colorful figures are available on website
Fig. 5 First-principles calculations of β-MTC811 cathode (a) Schematic diagram of desodiation process; (b) Lattice constant c/a during desodiation; (c) Calculated and fitted voltage plateaus, and experimental voltage curve; (d) Bader charge of Mn and Cu; (e-g) pDOS of Mn3d and Cu3d during different desodiation processes Colorful figures are available on website
Fig. S5 Electrochemical performance of (a-c) β-MTC721 and (d-f) β-MTC712 cathodes (a, d) Cycling performance during 50 cycles; (b, e) rate performance; (c, f) dQ/dV curves
Element | Na-O/Å | TM-O/Å |
---|---|---|
Ti | 2.37641 | 1.95505 |
V | 2.32810 | 1.98783 |
Cr | 2.36871 | 1.98479 |
Mn | 2.33621 | 1.97821 |
Fe | 2.34627 | 2.00070 |
Co | 2.36626 | 1.94259 |
Ni | 2.35691 | 1.91536 |
Cu | 2.39119 | 1.98934 |
Zn | 2.36493 | 2.08207 |
Table S1 Bond lengths of Na-O (in Na-O-TM) and TM-O
Element | Na-O/Å | TM-O/Å |
---|---|---|
Ti | 2.37641 | 1.95505 |
V | 2.32810 | 1.98783 |
Cr | 2.36871 | 1.98479 |
Mn | 2.33621 | 1.97821 |
Fe | 2.34627 | 2.00070 |
Co | 2.36626 | 1.94259 |
Ni | 2.35691 | 1.91536 |
Cu | 2.39119 | 1.98934 |
Zn | 2.36493 | 2.08207 |
Sample | Measured atomic ration | ||
---|---|---|---|
Mn | Ti | Cu | |
β-MTC811 | 0.8 | 0.09 | 0.1 |
β-MTC712 | 0.7 | 0.08 | 0.2 |
β-MTC721 | 0.7 | 0.19 | 0.1 |
Table S2 ICP-OES results of β-MTC811, β-MT712 and β-MTC721
Sample | Measured atomic ration | ||
---|---|---|---|
Mn | Ti | Cu | |
β-MTC811 | 0.8 | 0.09 | 0.1 |
β-MTC712 | 0.7 | 0.08 | 0.2 |
β-MTC721 | 0.7 | 0.19 | 0.1 |
Material | Cathodes’ mass loading/mg | Electrolyte amount/μL | Radius/mm |
---|---|---|---|
β-MTC811 | 4.192 | 160 | 14 |
β-MTC721 | 4.360 | 160 | 14 |
β-MTC712 | 5.696 | 160 | 14 |
Table S3 Parameters for button cell batteries
Material | Cathodes’ mass loading/mg | Electrolyte amount/μL | Radius/mm |
---|---|---|---|
β-MTC811 | 4.192 | 160 | 14 |
β-MTC721 | 4.360 | 160 | 14 |
β-MTC712 | 5.696 | 160 | 14 |
[1] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058):928.
DOI PMID |
[2] |
CANEPA P, GAUTAM G S, HANNAH D C, et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chemical Reviews, 2017, 117(5):4287.
DOI PMID |
[3] | HE T Q, KANG X Y, WANG F J, et al. Capacitive contribution matters in facilitating high power battery materials toward fast- charging alkali metal ion batteries. Materials Science & Engineering R-Reports, 2023, 154: 100737. |
[4] | SINGH A N, ISLAM M, MEENA A, et al. Unleashing the potential of sodium-ion batteries: current state and future directions for sustainable energy storage. Advanced Functional Materials, 2023, 33(46):2304617. |
[5] | YANG H, WANG D, LIU Y L, et al. Improvement of cycle life for layered oxide cathodes in sodium-ion batteries. Energy & Environmental Science, 2024, 17(5):1756. |
[6] | PANG X W, AN B G, ZHENG S M, et al. Cathode materials of metal-ion batteries for low-temperature applications. Journal of Alloys and Compounds, 2022, 912: 165142. |
[7] | LI J Q, LIANG Z X, JIN Y Q, et al. A high-voltage cathode material with ultralong cycle performance for sodium-ion batteries. Small Methods, 2024, 8(10):2301742. |
[8] | XU S T, YANG Y, TANG F, et al. Vanadium fluorophosphates: advanced cathode materials for next-generation secondary batteries. Materials Horizons, 2023, 10(6): 1901. |
[9] | ZHANG Y C, ZHOU X, YANG C, et al. Air-stable prussian white cathode materials for sodium-ion batteries enabled by ZnO surface modification. ACS Applied Materials & Interfaces, 2024, 16(13):15649. |
[10] | ZHOU J E, REDDY R C K, ZHONG A, et al. Metal-organic framework-based materials for advanced sodium storage: development and anticipation. Advanced Materials, 2024, 36(16):2312471. |
[11] | WU Z H, NI Y X, TAN S, et al. Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries. Journal of the American Chemical Society, 2023, 145(17):9596. |
[12] | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides. Physica B & C, 1980, 99(1-4):81. |
[13] | MENDIBOURE A, DELMAS C, HAGENMULLER P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. Journal of Solid State Chemistry, 1985, 57(3):323. |
[14] |
BILLAUD J, CLÉMENT R J, ARMSTRONG A R, et al. β-NaMnO2: a high-performance cathode for sodium-ion batteries. Journal of the American Chemical Society, 2014, 136(49):17243.
DOI PMID |
[15] | CLÉMENT R J, MIDDLEMISS D S, SEYMOUR I D, et al. Insights into the nature and evolution upon electrochemical cycling of planar defects in the β-NaMnO2 Na-ion battery cathode: an NMR and first-principles density functional theory approach. Chemistry of Materials, 2016, 28(22):8228. |
[16] | GU Z Y, HENG Y L, GUO J Z, et al. Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries. Nano Research, 2023, 16(1):439. |
[17] | HUANG Z X, ZHANG X L, ZHAO X X, et al. Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Science China- Materials, 2023, 66(1):79. |
[18] | HUANG Z X, ZHANG X L, ZHAO X X, et al. Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior. Journal of Materials Science & Technology, 2023, 160: 9. |
[19] | SHISHKIN M, KUMAKURA S, SATO S, et al. Unraveling the role of doping in selective stabilization of NaMnO2 polymorphs: combined theoretical and experimental study. Chemistry of Materials, 2018, 30(4):1257. |
[20] | JIANG L W, LU Y X, WANG Y S, et al. A high-temperature β-phase NaMnO2 stabilized by Cu doping and its Na storage properties. Chinese Physics Letters, 2018, 35(4):048801. |
[21] | WANG H J, GAO X, ZHANG S, et al. High-entropy Na-deficient layered oxides for sodium-ion batteries. ACS Nano, 2023, 17(13):12530. |
[22] | KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1):15. |
[23] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18):3865.
DOI PMID |
[24] | MONKHORST H J, PACK J D. Special points for brillouin-zone integrations. Physical Review B, 1976, 13(12):5188. |
[25] | OKHOTNIKOV K, CHARPENTIER T, CADARS S. Supercell program: a combinatorial structure-generation approach for the local- level modeling of atomic substitutions and partial occupancies in crystals. Journal of Cheminformatics, 2016, 8: 17. |
[26] |
DERINGER V L, TCHOUGRÉEFF A L, DRONSKOWSKI R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. Journal of Physical Chemistry A, 2011, 115(21):5461.
DOI PMID |
[27] | MAINTZ S, DERINGER V L, TCHOUGRÉEFF A L, et al. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. Journal of Computational Chemistry, 2016, 37(11):1030. |
[28] | HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006, 36(3):354. |
[29] |
SANVILLE E, KENNY S D, SMITH R, et al. Improved grid-based algorithm for bader charge allocation. Journal of Computational Chemistry, 2007, 28(5):899.
PMID |
[30] | MOMMA K, IZUMI F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011, 44: 1272. |
[31] | ZHANG T, REN M, HUANG Y H, et al. Negative lattice expansion in an O3-type transition-metal oxide cathode for highly stable sodium-ion batteries. Angewandte Chemie International Edition, 2024, 63(8):202316949. |
[32] | VANAPHUTI P, YAO Z Y, LIU Y T, et al. Achieving high stability and performance in P2-type Mn-based layered oxides with tetravalent cations for sodium-ion batteries. Small, 2022, 18(19):2201086. |
[33] | LI J C, ZHU G Z, LIANG P, et al. Analysis of Si, Cu, and their oxides by X-ray photoelectron spectroscopy. Journal of Chemical Education, 2024, 101(3):1162. |
[34] | URBAN A, SEO D H, CEDER G. Computational understanding of Li-ion batteries. npj Computational Materials, 2016, 2: 16002. |
[35] | ZHANG Z H, WU D H, ZHANG X, et al. First-principles computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6(14):6107. |
[1] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[2] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[3] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[4] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[5] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[6] | YUAN Gang, MA Xinguo, HE Hua, DENG Shuiquan, DUAN Wangyang, CHENG Zhengwang, ZOU Wei. Plane Strain on Band Structures and Photoelectric Properties of 2D Monolayer MoSi2N4 [J]. Journal of Inorganic Materials, 2022, 37(5): 527-533. |
[7] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[8] | PENG Junhui, TIKHONOV Evgenii. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study [J]. Journal of Inorganic Materials, 2022, 37(1): 51-57. |
[9] | YAN Yuxing, WANG Fan, ZHANG Juexuan, LI Fushao. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects [J]. Journal of Inorganic Materials, 2021, 36(3): 269-276. |
[10] | ZHAO Linyan, LIU Yangsi, XI Xiaoli, MA Liwen, NIE Zuoren. First-principles Study on Nanoscale Tungsten Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(11): 1125-1136. |
[11] | LIN Qimin, CUI Jiangong, YAN Xin, YUAN Xueguang, CHEN Xiaoyu, LU Qichao, LUO Yanbin, HUANG Xue, ZHANG Xia, REN Xiaomin. First-principles Study on Electronic Structure and Optical Properties of Single Point Defect Graphene Oxide [J]. Journal of Inorganic Materials, 2020, 35(10): 1117-1122. |
[12] | WANG Chang-Ying, LU Yu-Chang, REN Cui-Lan, WANG Gang, HUAI Ping. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States [J]. Journal of Inorganic Materials, 2020, 35(1): 73-78. |
[13] | LIU Guo-Quan, JIANG Xiao-Juan, ZHOU Jie, LI You-Bing, BAI Xiao-Jing, CHEN Ke, HUANG Qing, DU Shi-Yu. Synthesis and Theoretical Study of Conductive Mo1.33CT2 MXene [J]. Journal of Inorganic Materials, 2019, 34(7): 775-780. |
[14] | Yong LI, Wei-Xin HE, Xin-Yue ZHENG, Sheng-Lan YU, Hai-Tong LI, Hong-Yi LI, Rong ZHANG, Yu WANG. Prussian Blue Cathode Materials for Aqueous Sodium-ion Batteries:Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2019, 34(4): 365-372. |
[15] | WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||