Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (11): 1205-1211.DOI: 10.15541/jim20240132
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Qianyuan1(), LI Jiwei1, ZHANG Yuhan2, LIU Yankang1, MENG Yang1, CHU Yu1, ZHU Yijia1, XU Nuoyan1, ZHU Liang1, ZHANG Chuanxiang2(
), TAO Haijun1(
)
Received:
2024-03-20
Revised:
2024-05-29
Published:
2024-11-20
Online:
2024-07-15
Contact:
TAO Haijun, associate professor. E-mail: taohaijun@nuaa.edu.cn;About author:
LI Qianyuan (1999-), male, Master candidate. E-mail: liqianyuan@nuaa.edu.cn
CLC Number:
LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment[J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211.
Fig. 4 (a) UV-visible transmittance spectra and (b) I-V curves under dark state of c-TiO2/PbTiO3 layers with different reaction time Colorful figures are available on website
Reaction time/s | R/Ω | ρ/(Ω·cm) | σ/(mS·cm-1) |
---|---|---|---|
0 | 22.61 | 5.65×105 | 1.77×10-3 |
10 | 23.64 | 5.91×105 | 1.69×10-3 |
30 | 24.89 | 6.22×105 | 1.61×10-3 |
120 | 28.98 | 7.24×105 | 1.38×10-3 |
300 | 55.20 | 13.79×105 | 7.25×10-4 |
Table 1 Conductivities of c-TiO2/PbTiO3 layers with different reaction time
Reaction time/s | R/Ω | ρ/(Ω·cm) | σ/(mS·cm-1) |
---|---|---|---|
0 | 22.61 | 5.65×105 | 1.77×10-3 |
10 | 23.64 | 5.91×105 | 1.69×10-3 |
30 | 24.89 | 6.22×105 | 1.61×10-3 |
120 | 28.98 | 7.24×105 | 1.38×10-3 |
300 | 55.20 | 13.79×105 | 7.25×10-4 |
Reaction time/s | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
0 | 0.88 | 13.84 | 51.51 | 6.26 |
10 | 0.88 | 13.92 | 51.55 | 6.31 |
30 | 0.89 | 14.12 | 51.77 | 6.49 |
120 | 0.93 | 11.99 | 52.56 | 5.88 |
300 | 0.94 | 9.81 | 42.00 | 3.85 |
Table 2 Photovoltaic parameters of PSCs prepared by c-TiO2/PbTiO3 layers with different reaction time
Reaction time/s | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
0 | 0.88 | 13.84 | 51.51 | 6.26 |
10 | 0.88 | 13.92 | 51.55 | 6.31 |
30 | 0.89 | 14.12 | 51.77 | 6.49 |
120 | 0.93 | 11.99 | 52.56 | 5.88 |
300 | 0.94 | 9.81 | 42.00 | 3.85 |
Polarization voltage/V | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
0 | 0.88 | 14.12 | 51.18 | 6.41 |
20 | 0.89 | 14.39 | 51.25 | 6.53 |
40 | 0.93 | 14.83 | 51.16 | 7.11 |
50 | 0.93 | 14.95 | 51.35 | 7.11 |
60 | 0.93 | 15.00 | 51.20 | 7.12 |
Table 3 Photovoltaic parameters of PSCs prepared by c-TiO2/PbTiO3 layers after polarization with different voltages
Polarization voltage/V | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
0 | 0.88 | 14.12 | 51.18 | 6.41 |
20 | 0.89 | 14.39 | 51.25 | 6.53 |
40 | 0.93 | 14.83 | 51.16 | 7.11 |
50 | 0.93 | 14.95 | 51.35 | 7.11 |
60 | 0.93 | 15.00 | 51.20 | 7.12 |
Fig. 7 Mott-Schottky curves of c-TiO2 and c-TiO2/PbTiO3 layers (a) Primitive state; (b) ±40 V polarization treatment; (c) ±60 V polarization treatment; (d) Carrier concentrations
Fig. 8 (a) Nyquist plots, (b) composite impedance plots at different bias voltages, (c) voltage attenuation curves, (d) dark current curves, (e) capacitance-frequency curves, and (f) photocurrent output curves of c-TiO2, c-TiO2/PbTiO3 and polarization-treated c-TiO2/PbTiO3 layers
[1] | XING G, MATHEWS N, SUN S, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344. |
[2] | SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519. |
[3] | PARK N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett., 2013, 4(15): 2423. |
[4] |
LIU C, YANG Y, CHEN H, et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science, 2023, 382(6672): 810.
DOI PMID |
[5] |
ZHANG L, MEI L, WANG K, et al. Advances in the application of perovskite materials. Nano-Micro Lett., 2023, 15(1): 177.
DOI PMID |
[6] | HUANG H, CUI P, CHEN Y, et al. 24.8%-Efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule, 2022, 6(9): 2186. |
[7] |
SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater., 2018, 17(9): 820.
DOI PMID |
[8] | National Renewable Energy Laboratory. Best research-cell efficiency chart. [2024-03-18]. https://www.nrel.gov/pv/cell-efficiency.html. |
[9] |
ONO L K, LIU S, QI Y, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed., 2020, 59(17): 6676.
DOI PMID |
[10] |
CHEN B, RUDD P N, YANG S, et al. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev., 2019, 48(14): 3842.
DOI PMID |
[11] |
RAN C, XU J, GAO W, et al. Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chem. Soc. Rev., 2018, 47(12): 4581.
DOI PMID |
[12] | CAI Y, LIANG L, GAO P. Promise of commercialization: carbon materials for low-cost perovskite solar cells. Chin. Phys. B, 2018, 27(1): 018805. |
[13] |
ZHANG W, LUO J, LIU S, et al. Zirconia spacer: preparation by low temperature spray-coating and application in triple-layer perovskite solar cells. J. Inorg. Mater., 2023, 38(2): 213.
DOI |
[14] | FANG W, SHEN L, LI H, et al. Effect of film formation processes of NiOx mesoporous layer on performance of perovskite solar cells with carbon electrodes. J. Inorg. Mater., 2023, 38(9): 1103. |
[15] | WU W Q, CHEN D, CARUSO R A, et al. Recent progress in hybrid perovskite solar cells based on n-type materials. J. Mater. Chem. A, 2017, 5(21): 10092. |
[16] | ZHOU Y, LI X, LIN H. To be higher and stronger-metal oxide electron transport materials for perovskite solar cells. Small, 2020, 16(15): 1902579. |
[17] | CHU Y H, MARTIN L W, HOLCOMB M B, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater., 2008, 7(6): 478. |
[18] | BO L. Investigation on photocurrent polarity of a bulk heterojunction organic photovoltaic device using a ferroelectric thin film. Acta Phys.-Chim. Sin., 2012, 28(1): 217. |
[19] |
QIN W, ALI W, WANG J, et al. Suppressing non-radiative recombination in metal halide perovskite solar cells by synergistic effect of ferroelasticity. Nat. Commun., 2023, 14(1): 256.
DOI PMID |
[20] |
CHOI T, LEE S, CHOI Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923): 63.
DOI PMID |
[21] |
LOH L, BRISCOE J, DUNN S. Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells. Nanoscale, 2014, 6(12): 7072.
DOI PMID |
[22] |
LIU X, ZHANG Q, LI J, et al. Increase of power conversion efficiency in dye-sensitized solar cells through ferroelectric substrate induced charge transport enhancement. Sci. Rep., 2018, 8(1): 17389.
DOI PMID |
[23] | FENG K, LIU X, SI D, et al. Ferroelectric BaTiO3 dipole induced charge transfer enhancement in dye-sensitized solar cells. J. Power Sources, 2017, 350: 35. |
[24] | KOVAČ I, MUŽEVIĆ M, PAJTLER M V, et al. Charge carrier dynamics across the metal oxide/BaTiO3 interfaces toward photovoltaic applications from the theoretical perspective. Surf. Interfaces, 2023, 39: 102974. |
[25] | BAO D, WU X, ZHANG L, et al. Preparation, electrical and optical properties of (Pb,Ca)TiO3 thin films using a modified Sol-Gel technique. Thin Solid Films, 1999, 350(1/2): 30. |
[26] | DENG H, QIU Y, YANG S. General surfactant-free synthesis of MTiO3 (M = Ba, Sr, Pb) perovskite nanostrips. J. Mater. Chem., 2009, 19(7): 976. |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[6] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[7] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[8] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[9] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[10] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[11] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
[12] | WANG Ye, JIAO Yinan, GUO Junxia, LIU Huan, LI Rui, SHANG Zixuan, ZHANG Shidong, WANG Yonghao, GENG Haichuan, HOU Denglu, ZHAO Jinjin. Optimization of Interfacial Engineering of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(11): 1323-1330. |
[13] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[14] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[15] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||