Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (7): 839-844.DOI: 10.15541/jim20220638
Special Issue: 【信息功能】介电、铁电、压电材料(202506)
• RESEARCH LETTER • Previous Articles
WANG Xueyao1(), WANG Wugang2, LI Yingwei1(
), PENG Qi1, LIANG Ruihong2(
)
Received:
2022-10-31
Revised:
2022-12-23
Published:
2023-03-09
Online:
2023-03-09
Contact:
LI Yingwei, associate professor. E-mail: yingweili@whu.edu.cn;About author:
WANG Xueyao (1996-), female, PhD candidate. E-mail: 2014301890049@whu.edu.cn
Supported by:
CLC Number:
WANG Xueyao, WANG Wugang, LI Yingwei, PENG Qi, LIANG Ruihong. Correlation between Constitutive Behavior and Fracture Performance of PZT Ceramics[J]. Journal of Inorganic Materials, 2023, 38(7): 839-844.
Material | Density /(g·cm-3) | Grain size/μm |
---|---|---|
PZT-4 | 7.7 | (2.5±0.5) |
PZT-5 | 7.8 | (5.0±0.5) |
PZT-8 | 7.6 | (2.5±0.5) |
Table S1 Microstructural properties of the investigated materials
Material | Density /(g·cm-3) | Grain size/μm |
---|---|---|
PZT-4 | 7.7 | (2.5±0.5) |
PZT-5 | 7.8 | (5.0±0.5) |
PZT-8 | 7.6 | (2.5±0.5) |
Material | GPa | GPa | ||||
---|---|---|---|---|---|---|
PZT-4 | 120 | 0.18 | 73 | 154 | 0.4 | 0.35 |
PZT-5 | 55 | 0.32 | 53 | 131 | 0.33 | 0.33 |
PZT-8 | 170 | 0 | 58 | 114 | 0.12 | 0.27 |
Table S2 Determined values of ${{\sigma }_{c}}$, ${{\varepsilon }_{r}}$, ${{E}_{\mathbf{initial}}}$, ${{E}_{\mathbf{unloading}}}$, ${{\nu }_{\mathbf{initial}}}$, and ${{\nu }_{\mathbf{unloading}}}$
Material | GPa | GPa | ||||
---|---|---|---|---|---|---|
PZT-4 | 120 | 0.18 | 73 | 154 | 0.4 | 0.35 |
PZT-5 | 55 | 0.32 | 53 | 131 | 0.33 | 0.33 |
PZT-8 | 170 | 0 | 58 | 114 | 0.12 | 0.27 |
[1] |
AKSEL E, JONES J L. Advances in lead-free piezoelectric materials for sensors and actuators. Sensors, 2010, 10(3): 1935.
DOI PMID |
[2] |
RODEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc., 2015, 35(6):1659.
DOI URL |
[3] |
DAMJANOVIC D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Physics, 1998, 61(9):1267.
DOI URL |
[4] |
RODEL J, LI F. Lead-free piezoceramics: status and perspectives. MRS Bull., 2018, 43(8):576.
DOI URL |
[5] |
PISARENKO G, KOVALEV S P, CHUSHKO V M. Fracture toughness of piezoelectric ceramics. Strength Mater., 1980, 12(12):1492.
DOI URL |
[6] |
RODIG T, SCHONECKER A, GERLACH G. A survey on piezoelectric ceramics for generator applications. J. Am. Ceram. Soc., 2010, 93(4):901.
DOI URL |
[7] |
GALLEGO-JUAREZ J A. Piezoelectric ceramics and ultrasonic transducers. J. Phys. E Sci. Instrum., 1989, 22(22):804.
DOI URL |
[8] |
PFERNER R A, THURN G, ALDINGER F. Mechanical properties of PZT ceramics with tailored microstructure. Mater. Chem. Phys., 1999, 61(1):24.
DOI URL |
[9] |
LI F X, FANG D N, SOH A K. Theoretical saturated domain- orientation states in ferroelectric ceramics. Scr. Mater., 2006, 54(7):1241.
DOI URL |
[10] | CALDERON-MORENO J M, POPA M. Fracture Toughness Anisotropy by Indentation and SEVNB on Tetragonal PZT Polycrystals. 12th Meeting of the International Conference on the Strength of Materials (ICSMA 12), 2001, 319: 692. |
[11] |
LI Y W, LI F X. Large anisotropy of fracture toughness in mechanically poled/depoled ferroelectric ceramics. Scr. Mater., 2010, 62(5):313.
DOI URL |
[12] |
CALDERON-MORENO J M, GUIU F, MEREDITH M, et al. Fracture toughness anisotropy of PZT. Mater. Sci. Eng. A, 1997, 234-236(1):1062.
DOI URL |
[13] |
MEHTA K, VIRKAR A V. Fracture mechanisms in ferroelectric- ferroelastic lead zirconate titanate (Zr: Ti=0.54:0.46) ceramics. J. Am. Ceram. Soc., 1990, 73(3):567.
DOI URL |
[14] |
LUCATO SLDE; LUPASCU DC; RODEL J. Effect of poling direction on R-curve behavior in lead zirconate titanate. J. Am. Ceram. Soc., 2000, 83(2):424.
DOI URL |
[15] |
FETT T, GLAZOUNOV A, HOFFMANN M J, et al. On the interpretation of different R-curves for soft PZT. Eng. Fract. Mech., 2001, 68(10):1207.
DOI URL |
[16] |
SEO Y H, VOGLER M, ISAIA D, et al. Temperature-dependent R-curve behavior of Pb(Zr1-xTix)O3. Acta Mater., 2013, 61(17):6418.
DOI URL |
[17] | SCHNEIDER G A. Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Annu. Rev. Mater. Res., 2007, 37: 491. |
[18] | LI Y W, LIU Y, OCHSNER P E, et al. Temperature dependent fracture toughness of KNN-based lead-free piezoelectric ceramics. Acta Mater., 2019, 174: 369. |
[19] |
KUNA M. Fracture mechanics of piezoelectric materials-where are we right now? Eng. Fract. Mech., 2010, 77(2):309.
DOI URL |
[20] |
WEBBER K G, VOGLER M, KHANSUR N H, et al. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater. Struct., 2017, 26(6):063001.
DOI URL |
[21] |
KIM S B, KIM D Y, KIM J J, et al. Effect of grain size and poling on the fracture mode of lead zirconate titanate ceramics. J. Am. Ceram. Soc., 1990, 73(1):161.
DOI URL |
[22] | GUILLON O, THIEBAUD F, PERREUX D, et al. New considerations about the fracture mode of PZT ceramics. J. Am. Eur. Soc., 2005, 25: 2421. |
[23] | KUBLER J. Fracture toughness of ceramics using the SEVNB method a joint VAMSA/ESIS round robin. Fract. Mech. Ceram., 2002, 13: 437. |
[24] |
SALEM J A. Fracture toughness of advanced ceramics at room temperature. J. Res. Natl. Inst. Stand. Technol., 1992, 97(5):579.
DOI PMID |
[25] |
VOGLER M, FETT T, RODEL J. Crack-tip toughness of lead-free (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 piezoceramics. J. Am. Ceram. Soc., 2018, 101(12):5304.
DOI URL |
[26] |
LI F X, SOH A K. An optimization-based computational model for domain evolution in polycrystalline ferroelastics. Acta Mater., 2010, 58(6): 2207.
DOI URL |
[27] | BERMEJO R, DELUCA M. Mechanical characterization of PZT ceramics for multilayer piezoelectric actuators. J. Ceram. Sci. Technol., 2012, 3(4):159. |
[28] |
BERMEJO R, GRUNBICHLER H, KREITH J, et al. Fracture resistance of a doped PZT ceramic for multilayer piezoelectric actuators: Effect of mechanical load and temperature. J. Eur. Ceram. Soc., 2010, 30(3):705.
DOI URL |
[29] |
JELITTO H, KEBLER H, SCHNEIDER G A, et al. Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads. J. Eur. Ceram. Soc., 2005, 25(5):749.
DOI URL |
[30] |
DENKHAUS S M, VOGLER M, NOVK N, et al. Short crack fracture toughness in (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 relaxor ferroelectrics. J. Am. Ceram. Soc., 2017, 100(10):4760.
DOI URL |
[1] | WANG Xiaobo, ZHU Yuliang, XUE Wenchao, SHI Ruchuan, LUO Bofeng, LUO Chengtao. Effect of PbTiO3 Content Variation on High-power Performance of PMN-PT Single Crystal [J]. Journal of Inorganic Materials, 2025, 40(7): 840-846. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | YU Leyangyang, ZHAO Fangxia, ZHANG Shuxin, XU Yixiang, NIU Yaran, ZHANG Zhenzhong, ZHENG Xuebin. Preparation of High-entropy Boride Powders for Plasma Spraying by Inductive Plasma Spheroidization [J]. Journal of Inorganic Materials, 2025, 40(7): 808-816. |
[4] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. |
[5] | SUN Jing, LI Xiang, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Effect of Lauric Acid Modifier on the Hydrolysis Resistance of Aluminum Nitride Powders [J]. Journal of Inorganic Materials, 2025, 40(7): 826-832. |
[6] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
[7] | WANG Lujie, ZHANG Yuxin, LI Tongyang, YU Yuan, REN Pengwei, WANG Jianzhang, TANG Huaguo, YAO Xiumin, HUANG Yihua, LIU Xuejian, QIAO Zhuhui. Corrosion and Wear Behavior of Silicon Carbide Ceramic in Deep-sea Service Environment [J]. Journal of Inorganic Materials, 2025, 40(7): 799-807. |
[8] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[9] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[10] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[11] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[12] | ZHANG Jiawei, CHEN Ning, CHENG Yuan, WANG Bo, ZHU Jianguo, JIN Cheng. Electrical Properties of Bismuth Layered Piezoelectric Bi4Ti3O12 Ceramics with A/B-site Doping [J]. Journal of Inorganic Materials, 2025, 40(6): 690-696. |
[13] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[14] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[15] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||