Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (10): 1022-1030.DOI: 10.15541/jim20210074
Special Issue: 【虚拟专辑】新型材料表征技术(2020~2021)
• REVIEW • Previous Articles Next Articles
XIA Fangfang1(), WANG Fakun1, HU Hailong2, XU Xiang1, LI Yang1, ZHAI Tianyou1(
)
Received:
2021-02-05
Revised:
2021-03-26
Published:
2021-10-20
Online:
2021-06-01
Contact:
ZHAI Tianyou, professor. E-mail: zhaity@hust.edu.cn
About author:
XIA Fangfang(1986-), female, engineer. E-mail: xiafangfang@hust.edu.cn
Supported by:
CLC Number:
XIA Fangfang, WANG Fakun, HU Hailong, XU Xiang, LI Yang, ZHAI Tianyou. Application of Second Harmonic Generation in Characterization of 2D Materials[J]. Journal of Inorganic Materials, 2021, 36(10): 1022-1030.
Fig. 3 Characterization of 2D layered crystals with different stacking layers by SHG (a) Side view and top view of atomic structure illustration of typical layered WS2 with 2H and 3R stacking; (b-c) Optical images of 2H and 3R phase WS2; (d-e) SHG intensity of 2H and 3R phase WS2 as a function of layer numbers[40]; (f) SHG intensity of 2H and 3R phase MoS2 as a function of layer numbers[41]
Fig. 4 Characterization of stacking angle between layers by SHG (a) Schematic of SHG process in second harmonic generation of bilayer thin film; (b) Atomic structure of artificially stacked bilayer; (c-d) Optical images for stacked bilayers with different stacking angles and their corresponding SH intensities[42]
Fig. 5 Characterization of the grain boundary and crystal orientation of two-dimensional materials by SHG (a-b) Optical image and SHG image of a polycrystalline monolayer of MoS2 of the same area; (c) Polarized-SHG image showing the crystal orientations[43]; (d) Dark-field SHG imaging of a monolayer MoSe2[44]
Fig. 6 Characterization of the grain boundary by SHG and analysis of grain formation mechanism (a) Optical image and SHG mapping of the flake with boundary; Inset: illustration of the two edges growth at the boundary; (c) Illustration of the armchair directions of the two grains[24]
Fig. 7 Characterization of the strain of 2D materials by SHG (a) Schematic of strain apparatus and SHG process in monolayer MoSe2 under uniaxial tensile strain; (b) SHG spectra under different strain; (c) Evolution of normalized SHG intensity with strain[46]; (d, e) Schematic illustration of two-point bending method and SHG patterns for applied tensile strains of 0.1%, 0.5%, and 0.95%[47]
Fig. 8 Characterization of the defects of 2D materials by SHG (a-c) Optical image, fluorescence image and second harmonic mapping image of monolayer WS2[51]
Fig. 9 Characterization of 2D materials (MoS2/WS2 heterojunction) by SHG combined with photoluminescence and Raman spectroscopy (a) Atomic structure diagram; (b-c) Optical image and TEM image; (d, g) SHG intensity and mapping; (e, h) photoluminescence spectra at different positions; (f, i) Corresponding Raman spectra[52]
[1] |
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11):699-712.
DOI URL |
[2] |
WANG Y, XIAO J, YANG S, et al. Second harmonic generation spectroscopy on two-dimensional materials [Invited]. Optical Materials Express, 2019, 9(3):1136-1149.
DOI URL |
[3] |
ZHAI T Y, GAN L, WANG R Y. ReX2 (X=S,Se): a new opportunity for development of two-dimensional anisotropic materials. Journal of Inorganic Materials, 2019, 34(1):1-16.
DOI URL |
[4] |
MENG J H, GAO M L, ZHANG X W. Research progress of direct growth of two-dimensional hexagonal boron nitride on dielectric substrates. Journal of Inorganic Materials, 2019, 34(12):1245-1256.
DOI URL |
[5] | CHEN W, OUYANG J, YI X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Advanced Materials, 2018, 30(3):1703458. |
[6] |
HRISTU R, EFTIMIE L G, STANCIU S G, et al. Quantitative second harmonic generation microscopy for the structural characterization of capsular collagen in thyroid neoplasms. Biomed Opt Express, 2018, 9(8):3923-3936.
DOI URL |
[7] |
DENG X, WILLIAMS E D, THOMPSON E W, et al. Second-harmonic generation from biological tissues: effect of excitation wavelength. Scanning, 2002, 24(4):175-178.
DOI URL |
[8] |
ODIN C, LE GRAND Y, RENAULT A, et al. Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy. Journal of Microscopy, 2008, 229(1):32-38.
DOI URL |
[9] | LIN L, CHEN G, CHEN Z, et al. Prognostic value of tumor stromal collagen features in patients with hepatocellular carcinoma revealed by second-harmonic generation microscopy. Experimental and Molecular Pathology, 2020, 116:104513. |
[10] | SURIYA M, MANI MARAN M, BOAZ B M, et al. Crystal growth, structural, optical and piezoelectric investigations on novel B4AAT (bis-4-acetylanilinium tartrate): a phase matchable second and third-order NLO single crystal for optoelectronic and nonlinear optical device applications. Optical Materials, 2020, 108:110042. |
[11] | SIVAKUMAR T, ANBARASAN R, KALYANA SUNDAR J, et al. Enhancing the SHG effect of zinc chloride-doped DAST single crystals: new potential materials for nonlinear optical device applications. Journal of Materials Science: Materials in Electronics, 2020, 31(15):12943-12954. |
[12] | BHOWMIK G, AN Y Q, SCHUJMAN S, et al. Optical second harmonic generation from silicon (100) crystals with process tailored surface and embedded silver nanostructures for silicon nonlinear nanophotonics. Journal of Applied Physics, 2020, 128(16):165106. |
[13] | PACKIYA RAJ M, RAVI KUMAR S M, SIVAVISHNU D, et al. Synthesis, growth and optical, mechanical, electrical and surface properties of an inorganic new nonlinear optical crystal: sodium cadmium tetra chloride (SCTC). Crystal Research and Technology, 2018, 53(2):1700271. |
[14] | HONG X, HU G, ZHAO W, et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides. Research (Wash D C), 2020, 2020:9085782. |
[15] | PANTAZIS P, MALONEY J, WU D, et al. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proceeding of National Academy of Sciences of the United States of America, 2010, 107(33):14535-14540. |
[16] |
YUAN F, SUN S, HUANG Y, et al. Improvement of second-harmonic generation induced by structural distortions in Nb doped YCa9(VO4)7 crystals. Journal of Alloys and Compounds, 2017, 726:860-865.
DOI URL |
[17] | ZHANG Z, ZHANG L, GOGNA R, et al. Large enhancement of second-harmonic generation in MoS2 by one dimensional photonic crystals. Solid State Communications, 2020, 322:114043. |
[18] | YU Y, WANG J, WEI Y M, et al. Precise characterization of self-catalyzed III-V nanowire heterostructures via optical second harmonic generation. Nanotechnology, 2017, 28(39):395701. |
[19] | HUANG W J, HOU H Y, CHEN X B, et al. Synthesis of InSe nanoflakes with near-infrared photoresponse grown by chemical vapor deposition. Chemical Research in Chinese Universities. 2020, 41(4):682-689. |
[20] | ZENG Z X S, WANG X, PAN A L. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18):184210. |
[21] | YAN C, GAN L, ZHOU X, et al. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Advanced Functional Materials, 2017(27):1702918. |
[22] |
WEN X, GONG Z, LI D. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat, 2019, 1(3):317-337.
DOI URL |
[23] | 李家泽, 朱宝亮, 魏光辉. 晶体光学. 北京: 北京理工大学出版社, 1989: 343-390. |
[24] | HU X, HUANG P, JIN B, et al. Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. Journal of The American Chemical Society, 2018, 140(40):12909-12914. |
[25] | 张克从, 王希敏. 非线性光学晶体材料科学. 北京: 科学出版社, 2005: 26-77. |
[26] | SU J, WANG M, LI Y, et al. Sub-millimeter-scale monolayer p-type H-phase VS2. Advanced Functional Materials, 2020, 30(17):2000240. |
[27] | HUANG W, GAN L, LI H, et al. Phase-engineered growth of ultrathin inse flakes by chemical vapor deposition for high- efficiency second harmonic generation. Chemistry, 2018, 24(58):15678-15684. |
[28] | YANG D, HU X, ZHUANG M, et al. Inversion symmetry broken 2D 3R-MoTe2. Advanced Functional Materials, 2018, 28(26):1800785. |
[29] | WANG F, ZHANG Z, ZHANG Y, et al. Honeycomb RhI3 flakes with high environmental stability for optoelectronics. Advanced Materials, 2020, 32(25):2001979. |
[30] |
WANG R, LIANG F, WANG F, et al. Sr6Cd2Sb6O7S10: strong SHG response activated by highly polarizable Sb/O/S groups. Angewandte Chemie International Edition, 2019, 58(24):8078-8081.
DOI URL |
[31] |
LI L, HAN W, PI L, et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat, 2019, 1(1):54-73.
DOI URL |
[32] | YU Y, RAN M, ZHOU S, et al. Phase-engineered synthesis of ultrathin hexagonal and monoclinic GaTe flakes and phase transition study. Advanced Functional Materials, 2019, 29(23):1901012. |
[33] |
DAI M, CHEN H, WANG F, et al. Robust piezo-phototronic effect in multilayer gamma-InSe for high-performance self-powered flexible photodetectors. ACS Nano, 2019, 13(6):7291-7299.
DOI URL |
[34] |
FANG Y, HU X, ZHAO W, et al. Structural determination and nonlinear optical properties of new 1T‴-type MoS2 compound. Journal of the American Chemical Society, 2019, 141(2):790-793.
DOI URL |
[35] | GONG C, CHU J, YIN C, et al. Self-confined growth of ultrathin 2D nonlayered wide-bandgap semiconductor CuBr flakes. Advanced Materials, 2019, 31(36):e1903580. |
[36] | FENG X, SUN Z, PEI K, et al. 2D inorganic bimolecular crystals with strong in-plane anisotropy for second-order nonlinear optics. Advanced Materials, 2020, 32(32):e2003146. |
[37] |
LI Y, RAO Y, MAK K F, et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Letters, 2013, 13(7):3329-3333.
DOI URL |
[38] |
CHEN S Y, GOLDSTEIN T, VENKATARAMAN D, et al. Activation of new raman modes by inversion symmetry breaking in type II weyl semimetal candidate T'-MoTe2. Nano Letters, 2016, 16(9):5852-5860.
DOI URL |
[39] | SONG Y, TIAN R, YANG J, et al. Second harmonic generation in atomically thin MoTe2. Advanced Optical Materials, 2018, 6(17):1701334. |
[40] | ZENG Z, SUN X, ZHANG D, et al. Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS2 and WSe2 atomic layers. Advanced Functional Materials, 2019, 29(11):1806874. |
[41] | ZHAO M, YE Z, SUZUKI R, et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light: Science & Applications, 2016, 5(8):e16131. |
[42] |
HSU W T, ZHAO Z A, LI L J, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano, 2014, 8(3):2951-2958.
DOI URL |
[43] |
YIN X, YE Z, CHENE D A, et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science, 2014, 344(6183):488-490.
DOI URL |
[44] |
CARVALHO B R, WANG Y, FUJISAWA K, et al. Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano Letters, 2020, 20(1):284-291.
DOI URL |
[45] |
CHENG J, JIANG T, JI Q, et al. Kinetic nature of grain boundary formation in as-grown MoS2 monolayers. Advanced Materials, 2015, 27(27):4069-4074.
DOI URL |
[46] |
LIANG J, ZHANG J, LI Z, et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Letters, 2017, 17(12):7539-7543.
DOI URL |
[47] |
MENNEL L, FURCHI M M, WACHTER S, et al. Optical imaging of strain in two-dimensional crystals. Nature Communications, 2018, 9(1):516.
DOI URL |
[48] |
LYUBCHANSKII I L, DADOENKOVA N N, LYUBCHANSKII M I, et al. Second-harmonic generation from realistic film-substrate interfaces: the effects of strain. Applied Physics Letters, 2000, 76(14):1848-1850.
DOI URL |
[49] | CUNHA R, CADORE A, RAMOS S,, et al. Second harmonic generation in defective hexagonal boron nitride. Journal of Physics: Condensed Matter, 2020, 32(19): 19LT01. |
[50] | MURRAY W, LUCKING M, KAHN E, et al. Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2D Materials, 2020, 7(4):045020. |
[51] | ROSA H G, JUNPENG L, GOMES L C, et al. Second-harmonic spectroscopy for defects engineering monitoring in transition metal dichalcogenides. Advanced Optical Materials, 2018, 6(5):1701327. |
[52] |
WU W, ZHANG Q, ZHOU X, et al. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy, 2018, 51:45-53.
DOI URL |
[53] |
JIMENEZ V O, KALAPPATTIL V, EGGERS T, et al. A magnetic sensor using a 2D van der Waals ferromagnetic material. Scientific Reports, 2020, 10(1):4789.
DOI URL |
[54] | NAFDAY D, SEN D, KAUSHAL N, et al. 2D ferromagnetism in layered inorganic-organic hybrid perovskites. Physical Review Research, 2019, 1(3):032034. |
[55] |
DENEV S A, LUMMEN T T A, BARNES E, et al. Probing ferroelectrics using optical second harmonic generation. Journal of the American Ceramic Society, 2011, 94(9):2699-2727.
DOI URL |
[56] |
XU X, CHEN S, LIU S, et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. Journal of The American Chemical Society, 2019, 141(5):2128-2134.
DOI URL |
[57] | LI J, ZHOU P, ZOU Z, et al. Topological phase transition in 2D 1T′-WSTe. Physica Status Solidi (b), 2020, 257(9):2000010. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||