Collection of Novel Technologies for Materias Characerization(2020~2021)

Default Latest Most Read
Please wait a minute...
For Selected: Toggle Thumbnails
Study on the Solid Solution Structures of High-Entropy Ceramics by Transmission Electron Microscopy
GUO Xiaojie, BAO Weichao, LIU Jixuan, WANG Xingang, ZHANG Guojun, XU Fangfang
Journal of Inorganic Materials    2021, 36 (4): 365-371.   DOI: 10.15541/jim20200654
Abstract1490)   HTML88)    PDF(pc) (7521KB)(2475)       Save

High-entropy brings high-entropy effect on thermodynamics, lattice distortion effect on structure, diffusion retardation effect on dynamics and “cocktail” effect on properties in materials. It is a hotspot to improve the properties of ceramics by high-entropy design. However, it still lacks the study of high-entropy structures and their correlation to the properties through transmission electron microscopy (TEM). In this study, high-entropy borides and carbides powders were fabricated by using metal oxides, boron carbide and graphite as raw materials. The high-entropy (TiZrHfNbTa)B2 and (TiZrHfNbTa)C ceramics were then synthesized by spark plasma sintering of the as-fabricated powders. Transmission electron microscope and energy dispersive spectrometry were used to characterize the structure of the two high-entropy ceramics at the nano-scale and atomic-scale. The integrity of crystal structure maintained after solid solution of five transition metal elements which were found to uniformly distribute in the ceramics. However, at atomic scales, concentration oscillations of solid solution elements, atomic dispersion and lattice strain were observed. The solid solution structures at atomic scales as-obtained in this work can help to understand the structure-property relationship of high-entropy ceramics and provide experimental basis for the composition and structure design of high-entropy ceramics.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Cited: CSCD(1)
Application of Second Harmonic Generation in Characterization of 2D Materials
XIA Fangfang, WANG Fakun, HU Hailong, XU Xiang, LI Yang, ZHAI Tianyou
Journal of Inorganic Materials    2021, 36 (10): 1022-1030.   DOI: 10.15541/jim20210074
Abstract2249)   HTML120)    PDF(pc) (8432KB)(4007)       Save

As an important branch of nonlinear optics, second harmonic generation (SHG) is becoming one of the most important means to characterize crystal structure. Among various methods of characterization, because of nondestructive detection, high stability, tunability, ultrafast response, polarization sensitivity, versatility and simplicity, SHG is widely used to characterize the structure of two-dimensional (2D) materials. It provides important information for the physical properties and functional applications of 2D materials, as well as greatly promotes the rapid development of basic research on 2D materials. Here, the current state of the art focuses on the recent research work of SHG in 2D material structure characterization. Firstly, the principle of the second harmonic generation is briefly introduced. Then, the second harmonic generation device with femtosecond laser connected to confocal Raman spectrometer is taken as an example to present the mechanism of SHG. Afterwards, the applications of SHG are demonstrated in the thickness of interlayer stacking of 2D materials, the stacking angle between different layers of 2D materials, the grain boundary and the crystal orientation of monolayer 2D materials. The second harmonic intensity is used as a direct and sensitive means to monitor the strain amplitude, and the SHG signal changes are used to track defects in materials. Meanwhile, the importance of multi-dimensional correlation analysis of second harmonic generation, Raman spectroscopy and photoluminescence in comprehensive and in-depth characterization of materials is also explored. Finally, the potential research directions and prospects based on SHG in material characterization in the future is prospected.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Synchrotron Radiation and Its Applications Progress in Inorganic Materials
LIU Yunpeng, SHENG Weifan, WU Zhonghua
Journal of Inorganic Materials    2021, 36 (9): 901-918.   DOI: 10.15541/jim20200703
Abstract1637)   HTML94)    PDF(pc) (25262KB)(2490)       Save

Synchrotron Radiation (SR) is the electromagnetic radiation emitted along the tangent direction of the electron orbit by high-speed electrons moving in a circular accelerator when passing through a bending magnet. SR source, as a platform-type scientific and technological infrastructure, plays an important supporting role in the research and development of inorganic materials. SR techniques become an indispensable research tools of modern science and technology, and inorganic materials are one of the main application fields of SR techniques. Compared with conventional light source used for research, SR techniques in the study of inorganic materials have following obvious advantages: 1) higher obtained data qualities; 2) better spatial and temporal resolutions; 3) easier simulated in-situ and material service environment; 4) synchronously acquiring multi-scale, multi-faceted and multi-type structural information; 5) new means more likely to detect new structural characteristics. SR techniques help solve some key scientific problems in the field of inorganic materials, and greatly promote their research. Firstly, this paper briefly introduces the current status of SR sources and their three existing domestic SR facilities: Beijing Synchrotron Radiation Facility (BSRF), Shanghai Synchrotron Radiation Facility (SSRF), and National Synchrotron Radiation Laboratory (NSRL). Secondly, some application examples related to inorganic materials research are given from the four aspects of X-ray diffraction, scattering, spectroscopy and imaging. Finally, summary and prospect are given to the SR source, the structurally characterization techniques, and their application in inorganic materials.

Table and Figures | Reference | Related Articles | Metrics | Comments0
Cited: CSCD(1)