Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 119-125.DOI: 10.15541/jim20190309
Special Issue: MAX相和MXene材料; 2020年能源材料论文精选(二):超级电容器; 【虚拟专辑】超级电容器(2020~2021)
Previous Articles Next Articles
LI Xue-Lin,ZHU Jian-Feng(),JIAO Yu-Hong,HUANG Jia-Xuan,ZHAO Qian-Nan
Received:
2019-06-26
Revised:
2019-07-31
Published:
2020-01-20
Online:
2019-10-25
About author:
LI Xue-Lin(1994-), female, PhD candidate. E-mail:lxlsust@outlook.com
Supported by:
CLC Number:
LI Xue-Lin, ZHU Jian-Feng, JIAO Yu-Hong, HUANG Jia-Xuan, ZHAO Qian-Nan. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2Tx@MnO2 Composites[J]. Journal of Inorganic Materials, 2020, 35(1): 119-125.
Sample | Re/Ω | Cdl/μF | Rct/Ω | Zw/(Ω-1?s1/2) | CL/mF |
---|---|---|---|---|---|
Ti3C2Tx | 2.043 | 12.04 | 0.4575 | 0.04459 | 39.82 |
Ti3C2Tx@PDA | 2.397 | 43.26 | 0.4671 | 0.09429 | 65.16 |
Ti3C2Tx@δ-MnO2 nanofragments | 2.678 | 187.1 | 1.333 | 0.0999 | 343.5 |
Ti3C2Tx@α-MnO2 nanorods | 2.989 | 31.7 | 1.358 | 0.04104 | 263.1 |
Ti3C2Tx@α-MnO2 nanoflowers | 2.304 | 20.89 | 1.925 | 0.001071 | 65.97 |
Ti3C2Tx@α-MnO2 nanowires | 2.592 | 135.3 | 1.268 | 0.1547 | 373.5 |
Table 1 Details of various parameters based Spectroscopy Impedance on the equivalent circuit derived by fitting Electrochemical (EIS) data of prepared samples
Sample | Re/Ω | Cdl/μF | Rct/Ω | Zw/(Ω-1?s1/2) | CL/mF |
---|---|---|---|---|---|
Ti3C2Tx | 2.043 | 12.04 | 0.4575 | 0.04459 | 39.82 |
Ti3C2Tx@PDA | 2.397 | 43.26 | 0.4671 | 0.09429 | 65.16 |
Ti3C2Tx@δ-MnO2 nanofragments | 2.678 | 187.1 | 1.333 | 0.0999 | 343.5 |
Ti3C2Tx@α-MnO2 nanorods | 2.989 | 31.7 | 1.358 | 0.04104 | 263.1 |
Ti3C2Tx@α-MnO2 nanoflowers | 2.304 | 20.89 | 1.925 | 0.001071 | 65.97 |
Ti3C2Tx@α-MnO2 nanowires | 2.592 | 135.3 | 1.268 | 0.1547 | 373.5 |
[1] | LUO X, WANG J H, DOONER M , et al.Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 2015,137(C):511-536. |
[2] | MUZAFFAR A, AHAMED M B, DESHMUKH K , et al.A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renewable and Sustainable Energy Reviews, 2019,101:123-145. |
[3] | WANG F X, WU X W, YUAN X H , et al.Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017,46(22):6816-6854. |
[4] | NAGUIB M, KURTOGLU M, PRESSER V , et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23(37):4248-4253. |
[5] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y . 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017,2(2):16098. |
[6] | LI X L, ZHU J F, WANG L , et al.In-sit growth of carbon nanotubes on two-dimensional titanium carbide for enhanced electrochemical performance. Electrochimica Acta, 2017,258:291-301. |
[7] | HOU D, TAO H S, ZHU X Z , et al.Polydopamine and MnO2 core-shell composites for high-performance supercapacitors. Applied Surface Science, 2017,419:580-585. |
[8] | GUO D, YU X Z, SHI W , et al.Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high- performance supercapacitors. Journal of Materials Chemistry A, 2014,2(23):8833-8838. |
[9] | YU S P, LIU R T, YANG W S , et al.Synthesis and electrocatalytic performance of MnO2-promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014,2(15):5371-5378. |
[10] | WEI C G, XU C J, LI B H , et al.Anomalous effect of K ions on electrochemical capacitance of amorphous MnO2. Journal of Power Sources, 2013,234:1-7. |
[11] | TANGGARNJANAVALUKUL C, PHATTHARASUPAKUN N, KONGPATPANICH K , et al.Charge storage performances and mechanisms of MnO2 nanospheres, nanorods, nanotubes and nanosheets.Nanoscale, 2017,9(36):13630-13639. |
[12] | FENG X M, CHEN N N, ZHANG Y , et al.The self-assembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors.Journal of Materials Chemistry A, 2014,2(24):9178-9184. |
[13] | WU Z S, REN W C, WANG D W , et al.High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.ACS Nano, 2010,4(10):5835-5842. |
[14] | LUKATSKAYA M R, MASHTALIR O, REN C E , et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013,341(6153):1502-1505. |
[15] | LIN Z Y, SUN D F, HUANG Q , et al.Carbon nanofibers bridged two-dimensional titanium carbide as a superior anode in lithium- ion battery. Journal of Materials Chemistry A, 2015,3(27):14096-14100. |
[16] | MASHTALIR O, LUKATSKAYA M R, KOLESNIKOV A I , et al.The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 2016,8(17):9128-9133. |
[17] | LIU W H, WANG Z Q, SU Y L , et al.Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Advanced Energy Materials, 2017,7(22):1602834. |
[18] | WANG J F, ZHANG G N, REN L J , et al.Topochemical oxidation preparation of regular hexagonal manganese oxide nanoplates with birnessite-type layered structure. Crystal Growth & Design, 2014,14(11):5626-5633. |
[19] | JIANG J H, KUCERNAK A . Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochimica Acta, 2002,47(15):2381-2386. |
[20] | BAJ B G S, ASIRI A M, QUSTI A H , et al.Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors.Ultrasonics Sonochemistry, 2014,21(6):1933-1938. |
[21] | KANG L P, ZHANG M M, LIU Z H , et al.IR spectra of manganese oxides with either layered or tunnel structures. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2007,67(3/4):864-869. |
[22] | YANG X J, MAKITA Y, LIU Z H , et al.Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals.Chemistry of Materials, 2004,16(26):5581-5588. |
[23] | YUSUF M, KHAN M A, OTERO M , et al.Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. Journal of Colloid & Interface Science, 2017,493:51-61. |
[24] | SUI Z Y, MENG Y N, XIAO P W , et al.Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Applied Materials & Interfaces, 2015,7(3):1431-1438. |
[25] | SIMON P, GOGOTSI Y . Materials for electrochemical capacitors. Nature Materials, 2008,7(11):845-854. |
[26] | SUN Y, DANG H F, HUANG N B , et al.Effects of surfactants on the preparation of MnO2 and its capacitive performance.Journal of Applied Biomaterials & Functional Materials, 2017,15:S7-S12. |
[27] | ZHAO M Q, REN C E, LING Z , et al.Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 2015,27(2):339-345. |
[28] | PETTONG T, IAMPRASERTKUN P, KRITTAYAVATHANANON A , et al.High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel.ACS Applied Materials & Interfaces, 2016,8(49):34045-34053. |
[1] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[2] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[3] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[4] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[5] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[6] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[7] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[8] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[9] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[10] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[11] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[12] | DING Haoming, LI Mian, LI Youbing, CHEN Ke, XIAO Yukun, ZHOU Jie, TAO Quanzheng, Johanna Rosen, YIN Hang, BAI Yuelei, ZHANG Bikun, SUN Zhimei, WANG Junjie, ZHANG Yiming, HUANG Zhenying, ZHANG Peigen, SUN Zhengming, HAN Meikang, ZHAO Shuang, WANG Chenxu, HUANG Qing. Progress in Structural Tailoring and Properties of Ternary Layered Ceramics [J]. Journal of Inorganic Materials, 2023, 38(8): 845-884. |
[13] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[14] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[15] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||