Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 119-125.DOI: 10.15541/jim20190309
Special Issue: MAX相和MXene材料; 2020年能源材料论文精选(二):超级电容器; 【虚拟专辑】超级电容器(2020~2021)
Previous Articles Next Articles
LI Xue-Lin,ZHU Jian-Feng(),JIAO Yu-Hong,HUANG Jia-Xuan,ZHAO Qian-Nan
Received:
2019-06-26
Revised:
2019-07-31
Published:
2020-01-20
Online:
2019-10-25
About author:
LI Xue-Lin(1994-), female, PhD candidate. E-mail:lxlsust@outlook.com
Supported by:
CLC Number:
LI Xue-Lin, ZHU Jian-Feng, JIAO Yu-Hong, HUANG Jia-Xuan, ZHAO Qian-Nan. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2Tx@MnO2 Composites[J]. Journal of Inorganic Materials, 2020, 35(1): 119-125.
Sample | Re/Ω | Cdl/μF | Rct/Ω | Zw/(Ω-1?s1/2) | CL/mF |
---|---|---|---|---|---|
Ti3C2Tx | 2.043 | 12.04 | 0.4575 | 0.04459 | 39.82 |
Ti3C2Tx@PDA | 2.397 | 43.26 | 0.4671 | 0.09429 | 65.16 |
Ti3C2Tx@δ-MnO2 nanofragments | 2.678 | 187.1 | 1.333 | 0.0999 | 343.5 |
Ti3C2Tx@α-MnO2 nanorods | 2.989 | 31.7 | 1.358 | 0.04104 | 263.1 |
Ti3C2Tx@α-MnO2 nanoflowers | 2.304 | 20.89 | 1.925 | 0.001071 | 65.97 |
Ti3C2Tx@α-MnO2 nanowires | 2.592 | 135.3 | 1.268 | 0.1547 | 373.5 |
Table 1 Details of various parameters based Spectroscopy Impedance on the equivalent circuit derived by fitting Electrochemical (EIS) data of prepared samples
Sample | Re/Ω | Cdl/μF | Rct/Ω | Zw/(Ω-1?s1/2) | CL/mF |
---|---|---|---|---|---|
Ti3C2Tx | 2.043 | 12.04 | 0.4575 | 0.04459 | 39.82 |
Ti3C2Tx@PDA | 2.397 | 43.26 | 0.4671 | 0.09429 | 65.16 |
Ti3C2Tx@δ-MnO2 nanofragments | 2.678 | 187.1 | 1.333 | 0.0999 | 343.5 |
Ti3C2Tx@α-MnO2 nanorods | 2.989 | 31.7 | 1.358 | 0.04104 | 263.1 |
Ti3C2Tx@α-MnO2 nanoflowers | 2.304 | 20.89 | 1.925 | 0.001071 | 65.97 |
Ti3C2Tx@α-MnO2 nanowires | 2.592 | 135.3 | 1.268 | 0.1547 | 373.5 |
[1] | LUO X, WANG J H, DOONER M , et al.Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 2015,137(C):511-536. |
[2] | MUZAFFAR A, AHAMED M B, DESHMUKH K , et al.A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renewable and Sustainable Energy Reviews, 2019,101:123-145. |
[3] | WANG F X, WU X W, YUAN X H , et al.Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 2017,46(22):6816-6854. |
[4] | NAGUIB M, KURTOGLU M, PRESSER V , et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23(37):4248-4253. |
[5] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y . 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017,2(2):16098. |
[6] | LI X L, ZHU J F, WANG L , et al.In-sit growth of carbon nanotubes on two-dimensional titanium carbide for enhanced electrochemical performance. Electrochimica Acta, 2017,258:291-301. |
[7] | HOU D, TAO H S, ZHU X Z , et al.Polydopamine and MnO2 core-shell composites for high-performance supercapacitors. Applied Surface Science, 2017,419:580-585. |
[8] | GUO D, YU X Z, SHI W , et al.Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high- performance supercapacitors. Journal of Materials Chemistry A, 2014,2(23):8833-8838. |
[9] | YU S P, LIU R T, YANG W S , et al.Synthesis and electrocatalytic performance of MnO2-promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014,2(15):5371-5378. |
[10] | WEI C G, XU C J, LI B H , et al.Anomalous effect of K ions on electrochemical capacitance of amorphous MnO2. Journal of Power Sources, 2013,234:1-7. |
[11] | TANGGARNJANAVALUKUL C, PHATTHARASUPAKUN N, KONGPATPANICH K , et al.Charge storage performances and mechanisms of MnO2 nanospheres, nanorods, nanotubes and nanosheets.Nanoscale, 2017,9(36):13630-13639. |
[12] | FENG X M, CHEN N N, ZHANG Y , et al.The self-assembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors.Journal of Materials Chemistry A, 2014,2(24):9178-9184. |
[13] | WU Z S, REN W C, WANG D W , et al.High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors.ACS Nano, 2010,4(10):5835-5842. |
[14] | LUKATSKAYA M R, MASHTALIR O, REN C E , et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013,341(6153):1502-1505. |
[15] | LIN Z Y, SUN D F, HUANG Q , et al.Carbon nanofibers bridged two-dimensional titanium carbide as a superior anode in lithium- ion battery. Journal of Materials Chemistry A, 2015,3(27):14096-14100. |
[16] | MASHTALIR O, LUKATSKAYA M R, KOLESNIKOV A I , et al.The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale, 2016,8(17):9128-9133. |
[17] | LIU W H, WANG Z Q, SU Y L , et al.Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Advanced Energy Materials, 2017,7(22):1602834. |
[18] | WANG J F, ZHANG G N, REN L J , et al.Topochemical oxidation preparation of regular hexagonal manganese oxide nanoplates with birnessite-type layered structure. Crystal Growth & Design, 2014,14(11):5626-5633. |
[19] | JIANG J H, KUCERNAK A . Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochimica Acta, 2002,47(15):2381-2386. |
[20] | BAJ B G S, ASIRI A M, QUSTI A H , et al.Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors.Ultrasonics Sonochemistry, 2014,21(6):1933-1938. |
[21] | KANG L P, ZHANG M M, LIU Z H , et al.IR spectra of manganese oxides with either layered or tunnel structures. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2007,67(3/4):864-869. |
[22] | YANG X J, MAKITA Y, LIU Z H , et al.Structural characterization of self-assembled MnO2 nanosheets from birnessite manganese oxide single crystals.Chemistry of Materials, 2004,16(26):5581-5588. |
[23] | YUSUF M, KHAN M A, OTERO M , et al.Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. Journal of Colloid & Interface Science, 2017,493:51-61. |
[24] | SUI Z Y, MENG Y N, XIAO P W , et al.Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Applied Materials & Interfaces, 2015,7(3):1431-1438. |
[25] | SIMON P, GOGOTSI Y . Materials for electrochemical capacitors. Nature Materials, 2008,7(11):845-854. |
[26] | SUN Y, DANG H F, HUANG N B , et al.Effects of surfactants on the preparation of MnO2 and its capacitive performance.Journal of Applied Biomaterials & Functional Materials, 2017,15:S7-S12. |
[27] | ZHAO M Q, REN C E, LING Z , et al.Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 2015,27(2):339-345. |
[28] | PETTONG T, IAMPRASERTKUN P, KRITTAYAVATHANANON A , et al.High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel.ACS Applied Materials & Interfaces, 2016,8(49):34045-34053. |
[1] | WAN Junchi, DU Lulu, ZHANG Yongshang, LI Lin, LIU Jiande, ZHANG Linsen. Structural Evolution and Electrochemical Performance of Na4FexP4O12+x/C Cathode Materials for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(5): 497-503. |
[2] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[3] | LIU Huilai, LI Zhihao, KONG Defeng, CHEN Xing. Preparation of FePc/MXene Composite Cathode and Electro-Fenton Degradation of Sulfadimethoxine [J]. Journal of Inorganic Materials, 2025, 40(1): 61-69. |
[4] | MA Junjie, YANG Yuying, GAO Mingyang, QI Bingjie, WU Yulong, HUANG Xueli, HUANG He. Preparation and Activity of CeO2 Nanoparticles in Synthesis of Polycarbonates from CO2 [J]. Journal of Inorganic Materials, 2025, 40(1): 70-76. |
[5] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[6] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[7] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. |
[8] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[9] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[10] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. |
[11] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[12] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. |
[13] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. |
[14] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[15] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||