Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (6): 633-638.DOI: 10.3724/SP.J.1077.2014.13463
• Orginal Article • Previous Articles Next Articles
SUN Ke1, LI Yao1, YANG Yan2, LAN Zhong-Wen1, YU Zhong1, GUO Rong-Di1
Received:
2013-09-12
Revised:
2013-11-25
Published:
2014-06-20
Online:
2014-05-27
CLC Number:
SUN Ke, LI Yao, YANG Yan, LAN Zhong-Wen, YU Zhong, GUO Rong-Di. Influence of Ta2O5 Additive on Microstructure and Magnetic Properties of NiCuZn Ferrites[J]. Journal of Inorganic Materials, 2014, 29(6): 633-638.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 SEM images of NiCuZn ferrite samples doped with different Ta2O5 contents (a) 0; (b) 0.04wt%; (c) 0.08wt%; (d) 0.12wt%; (e) 0.20wt%; (f) 0.30wt%; (g) 0.50wt%; (h) 1.00wt%
No. | Ta2O5/wt% | D/μm | dm/(g·cm-3) | μia | fr/MHz | Bsb/mT | Pcvc/(mW·cm-3) |
---|---|---|---|---|---|---|---|
T1 | 0 | 1.208 | 5.06 | 101 | 78.93 | 394 | 364 |
T2 | 0.04 | 1.031 | 5.00 | 93 | 87.79 | 379 | 225 |
T3 | 0.08 | 0.986 | 4.98 | 90 | 92.13 | 373 | 182 |
T4 | 0.12 | 0.975 | 4.83 | 88 | 96.69 | 365 | 139 |
T5 | 0.20 | 0.915 | 4.79 | 78 | 98.58 | 363 | 170 |
T6 | 0.30 | 0.910 | 4.70 | 74 | 103.46 | 351 | 191 |
T7 | 0.50 | 0.825 | 4.48 | 67 | 117.31 | 302 | — |
T8 | 1.00 | 0.758 | 4.13 | 46 | 150.09 | 240 | — |
Table 1 Properties of NiCuZn ferrite samples doped with different Ta2O5 contents
No. | Ta2O5/wt% | D/μm | dm/(g·cm-3) | μia | fr/MHz | Bsb/mT | Pcvc/(mW·cm-3) |
---|---|---|---|---|---|---|---|
T1 | 0 | 1.208 | 5.06 | 101 | 78.93 | 394 | 364 |
T2 | 0.04 | 1.031 | 5.00 | 93 | 87.79 | 379 | 225 |
T3 | 0.08 | 0.986 | 4.98 | 90 | 92.13 | 373 | 182 |
T4 | 0.12 | 0.975 | 4.83 | 88 | 96.69 | 365 | 139 |
T5 | 0.20 | 0.915 | 4.79 | 78 | 98.58 | 363 | 170 |
T6 | 0.30 | 0.910 | 4.70 | 74 | 103.46 | 351 | 191 |
T7 | 0.50 | 0.825 | 4.48 | 67 | 117.31 | 302 | — |
T8 | 1.00 | 0.758 | 4.13 | 46 | 150.09 | 240 | — |
[1] | KONDO K, CHIBA T, YAMADA S, et al. Analysis of power loss in Ni-Zn ferrites. J. Appl. Phys., 2000, 87(9): 6229-6231. |
[2] | SU HUA, ZHANG HUAIWU, TANG XIAOLI, et al. Effects of microstructure on permeability and power loss characteristics of the NiZn ferrites .J. Magn. Magn. Mater, 2008, 320(3/4): 483-485. |
[3] | SEO S H, OH J H. Effect of MoO3 addition on sintering behaviors and magnetic properties of NiCuZn ferrite for multilayer chip inductor . IEEE Trans. Magn., 1999, 35(5): 3412-3414. |
[4] | SU HUA, ZHANG HUAIWU, TANG XIAOLI, et al. Electromagnetic properties of Mg-substituted NiCuZn ferrites for multilayer chip inductors applications. IEEE Trans. Magn., 2009, 45(5): 2050-2052. |
[5] | ZHONG LIJUN, HU JUN, NI ZHEMING. Investigation of temperature characteristic of magnetic properties in high frequency NiZn ferrite. J. Funct. Mater, 2009, 40: 292-296. |
[6] | HU JUN, ZHONG LIJUN. High-temperature power loss of high frequency power NiZn ferrite. J. Univ. Sci. Technol. Beijing, 2011, 33(1): 65-70. |
[7] | REZLESCU E, SACHELARIE L, POPA P D, et al. Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites.IEEE Trans. Magn, 2000, 36(6): 3962-3967. |
[8] | MIRZAEE O. Influence of PbO and TiO2 additives on the microstructure development and magnetic properties of Ni-Zn soft ferrites. J. King Saud Univ. - Eng. Sci., 2013, DOI: 1.016/j.jksues.2013.05.005. |
[9] | ZNIDARSIC A, LIMPEL M, DROFENIK M. Effect of dopants on the magnetic properties of MnZn ferrites for high frequency power supplies. .IEEE Trans. Magn., 1995, 31(2): 950-953. |
[10] | LI LEZHONG, LAN ZHONGWEN, YU ZHONG, et al. Effects of Ta2O5 addition on the microstructure and temperature dependence of magnetic properties of MnZn ferrites. J. Magn. Magn. Mater, 2009, 321: 438-441. |
[11] | KRISHNAVENI T, MURTHY S R, GAO F, et al. Microwave hydrothermal synthesis of nanosize Ta2O5 added Mg-Cu-Zn ferrites. J. Mater. Sci., 2006, 41(5): 1471-1474. |
[12] | REZLESCU N, SACHELARIE L, REZLESCU L, et al. Influence of PbO and Ta2O5 on some physical properties of MgCuZn ferrites. Cryst. Res. Technol., 2001, 36(2): 157-167. |
[13] | JIANG JIUXING, LI YAO, HE XIAODONG, et al. Influence of multiple dopants on properties of Mn-Zn ferrite. J. Chin. Ceram. Soc., 2004, 32(6): 747-750. |
[14] | OTSUKI E, YAMADA S, OTSUKA T, et al. Microstructure and physical properties of MnZn ferrites for high frequency power supplies. J. Appl. Phys., 1991, 69(8): 5942-5944. |
[15] | VAN DER ZAAG P J,VAN DER VALK P J, REKVELDT M T H. A domain size effect in the magnetic hysteresis of NiZn-ferrites. Appl. Phys. Lett., 1996, 69(19): 2927-2929. |
[16] | 黄永杰,李世堃,兰中文. 磁性材料. 成都:电子科技大学出版社, 1993: 48-61. |
[17] | SUN KE, LAN ZHONGWEN, YU ZHONG, et al. Analysis of losses in NiO doped MnZn ferrites. J. Alloys Compd., 2009, 468: 315-320. |
[18] | 宛德福,马兴隆. 磁性物理学(修订本). 成都:电子科技大学出版社, 1999: 67-68, 356-378. |
[19] | INOUE O, MATSUTANI N, KUGIMIYA K. Low loss MnZn- ferrites: frequency dependence of minimum power loss temperature.IEEE Trans. Magn., 1993, 29(6): 3532-3534. |
[20] | STOPPELS D. Developments in soft magnetic power ferrites. J. Magn. Magn. Mater., 1996, 160: 323-328. |
[21] | Van Der Zaag P J. New views on the dissipation in soft magnetic ferrites. J. Magn. Magn. Mater., 1999(196/197): 315-319. |
[22] | JEONG WEON HEE, HAN YOUNG HO. Effects of grain size on the residual loss of Mn-Zn ferrites. J. Appl. Phys., 2002, 91(10): 7619-7621. |
[23] | KAWANO T, FUJITA A, GOTOH S. Analysis of power loss at high frequency for MnZn ferrites. J. Appl. Phys., 2000, 87(9): 6214-6216. |
[24] | SUN KE, LAN ZHONGWEN, YU ZHONG, et al. Temperature dependence of core losses at high frequency for MnZn ferrites .Physica B., 2010, 405: 1018-1021. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[4] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[5] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[6] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[7] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[8] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[9] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[10] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[11] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[12] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[13] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[14] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[15] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||