Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (1): 13-22.DOI: 10.3724/SP.J.1077.2014.10002
• Invited Review • Previous Articles Next Articles
WANG Ke1, SHEN Zong-Yang1,2, ZHANG Bo-Ping3, LI Jing-Feng1
Received:
2013-10-22
Revised:
2013-10-30
Published:
2014-01-20
Online:
2013-12-09
Supported by:
National Natural Science Foundation of China (51332002, 51302144); Ground Plan of Science and Technolagy in Jiangxi Province department of Education (KJLD13076)
CLC Number:
WANG Ke, SHEN Zong-Yang, ZHANG Bo-Ping, LI Jing-Feng. (K, Na)NbO3-based Lead-free Piezoceramics: Status, Prospects and Challenges[J]. Journal of Inorganic Materials, 2014, 29(1): 13-22.
Add to citation manager EndNote|Ris|BibTeX
[1] Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. Academic Press: New York, 1971. [2] Xiao D G. Environmentally conscious ferroelectries research. J. Korean Phys. Soc., 1998, 32(S): S1798?S1800. [3] Ge W , Cao H, Li J, et al. Influence of dc-bias on phase stability in Mn-doped Na0.5Bi0.5TiO3-5.6at%BaTiO3 single crystals. Appl. Phys. Lett., 2009, 95(16): 162903–1–3. [4] Wang K, Li J F. Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater., 2010, 20(12): 1924–1929 . [5] Wang K, Yao F Z, Jo W, et al. Temperature-insensitive (K, Na) NbO3-based lead-free piezo actuator ceramics. Adv. Funct. Mater., 2013, 23: 4079–4086. [6] Wang K, Li J F. Analysis of crystallographic evolution in (Na, K) NbO3-based lead-free piezoceramics by X-ray diffraction, Appl. Phys. Lett., 2007, 91(26) : 262902–1–3. [7] Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3ceramics. Appl. Phys. Lett., 2007, 90(26)?: 262903–1–3. [8] Lu N, Yu R, Cheng Z Y, et al. Ferroelectric polarization and domain walls in orthorhombic (K1-xNax)NbO3 lead-free ferroelectric ceramics. Appl. Phys. Lett., 2010, 96(22)?: 221905–1–3. [9] Xiao D Q, Wu J G, Wu L, et al. Investigation on the composition design and properties study ofperovskite lead-free piezoelectric ceramics. J. Mater. Sci., 2009, 44(19): 5408–5419. [10] Wang L Y, Ren W, Shi P, et al. Enhanced ferroelectric properties in Mn-doped K0.5Na0.5NbO3 thin films derived from chemical solution deposition. Appl. Phys. Lett., 2010, 97(7): 072902–1–3. [11] Fu F, Shen B, Zhai J W, et al. Influence of Mn2+ on the electrical properties of textured KNN thick films. Ceram. Int., 2012, 38: S287–S290. [12] Gao Y, Zhang J L, Qing Y, et al. Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02-(Nb0.77Ta0.18Sb0.05)O3 ceramic. J. Am. Ceram. Soc., 2011, 94(9): 2968–2973. [13] Cheng H L, Du H L, Zhou W C, et al. Effects of LaFeO3?additions on the dielectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramics. Journal of Inorganic Materials, 2012, 27(11): 1228–1232. [14] Chu R G, Hao J G, Xu Z J, et al. Preparation and characterrization of (K0.5Na0.5)0.94-2xLi0.06SrxNb0.98Sb0.02O3?lead-free piezoelectric ceramics. Journal of Inorganic Materials, 2010, 25(11): 1164?1168. [15] Zuo R, Fu J. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J. Am. Ceram. Soc.,2011, 94(5):1467–1470. [16] JIANG X P, HU X P, JIANG F L, et al. Li-modified sodium potassium tantalum niobate lead-free piezoelectric ceramics. Journal of Inorganic Materials, 2007, 22(3): 465–468. [17] LI Y M, XIAO Z G, SHEN Z Y, et al. Effect of BaZrO3?depend on the structure and electric properties of (K0.49Na0.51)0.98Li0.02- (Nb0.77Ta0.18Sb0.05)O3?lead-free piezoceramics. Journal of Inorganic Materials, 2013, 28(6): 629–634. [18] Fu J, Zuo R Z, Wang X H, et al. Polymorphic phase transition and enhanced piezoelectric properties of LiTaO3-modified (Na0.52K0.48)- (Nb0.93Sb0.07)O3 lead-free ceramics. J. Phys. D: Appl. Phys., 2009, 42(1): 012006–1–4. [19] Liu N, Wang K, Li J F, et al. Hydrothermal synthesis and spark plasma sintering of (K, Na)NbO3 lead-free piezoceramics. J. Am. Ceram. Soc., 2009, 92(8):1884–1887. [20] Zuo R Z, Xu Z K, Li L T. Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics. J. Phys. Chem. Solids., 2008, 69(7):1728–1732. [21] Zhu K J, Su L K, Ji H L, et al. Hydrothermal solvothermal synthesis of (K, Na) NbO3?lead-free piezoelectric ceramics and its properties. Journal of Inorganic Materials, 2010, 25(11): 1159–1163. [22] Smolenskii G A, Isupov V A, Agranovskaya A I, et al. New ferroelectrics of complex composition. Soviet Physics-Solid State,1961, 2(11): 2651–2654. [23] Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys.,1991, 30(9B): 2236–2239. [24] Egerton L, Dillon D M. Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate. J. Am. Ceram. Soc.,1959, 42(9): 438–442. [25] Maeder M D, Damjanovic D, Setter N. Lead free piezoelectric materials. J. Electroceram., 2004 , 13(1/2/3):385–392. [26] Tennery V J, Hang K W. Thermal and X-Ray diffraction studies of NaNbO3-KNbO3 system. J. Appl. Phys., 1968, 39(10): 4749–4753. [27] Megaw H D. Crystal structure of double oxides of the perovskite type. P. Phys. Soc. Lond.,1946, 58(326): 133–152. [28] Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics. Appl. Phys. Lett.,2009, 94(4): 042905–1–3. [29] Damjanovic D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc., 2005, 88(10): 2663–2676. [30] Haun M J, Furman E, Jang S J, et al. Thermodynamic theory of the lead zirconate-titanate solid-solution system, 5. Theoretical Calculations. Ferroelectrics, 1989, 99: 63–86. [31] Haun M J, Zhuang Z Q, Furman E, et al. Thermodynamic theory of the lead zirconate-titanate solid-solution system, 3. Curie constant And 6th-order polarization interaction dielectric stiffness coefficients. Ferroelectrics,1989, 99: 45–54. [32] Damjanovic D, Demartin M. Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. Journal of Physics-Condensed Matter, 1997, 9(23): 4943–4953. [33] Wu L, Zhang J L, Wang C L, et al. Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics. J. Appl. Phys., 2008, 103(8): 084116–1–5. [34] Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2006, 89(2): 706–709. [35] Zhang B P, Li J F, Wang K, et al. Compositionaldependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramicsprepared by spark plasma sintering. J. Am. Ceram. Soc., 2006, 89(5): 1605–1609. [36] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature, 2004, 432(4): 84–87. [37] Lin D, Kwok K W, Chan H L W. Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1-xLix (Nb1-yTay)O3 lead-free piezoelectric ceramics. J. Appl. Phys., 2007, 102(3): 034102–1–7. [38] Wu J G, Xiaob D Q, Wang Y Y, et al. Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96-xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl. Phys. Lett., 2007, 91(25): 252907–1–3. [39] Akdo?an E K, Kerman K, Abazari M, et al. Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett., 2008, 92(11): 112908–1–3. [40] Zhou J J, Wang K, Li F, et al. High and frequency-insensitive converse piezoelectric coefficient obtained in AgSbO3-modified (Li, K, Na)(Nb,Ta)O3 lead-free piezoceramics. J. Am. Ceram. Soc., 2013, 96(2): 519–523. [41] Li J F, Zhen Y H, Zhang B P, et al. Normal sintering of (K, Na)NbO3- based lead-free piezoelectric ceramics. Ceram. Int., 2008, 34(4): 783–786. [42] Zhou J J, Li J F, Zhang X W. Orthorhombic to tetragonal phase transition due to stress release in (Li,Ta)-doped(K,Na)NbO3 lead-free piezoceramics. J. Eur. Ceram. Soc., 2012, 32(2):267-270. [43] Guo Y P, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett., 2004, 85(18): 4121–4123. [44] Wada S, Yako K, Kakemoto H, et al. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys., 2005, 98(1): 014109–1–7. [45] Sluka T, Tagantsev A K, Damjanovic D, et al. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Commun., 2012, 3: 748–1–7. [46] Zhen Y H, Li J F. Abnormalgrain growth and new core-shell structure in (K, Na)NbO3-based lead-free piezoelectric ceramics. J. Am. Ceram. Soc., 2007, 90(11): 3496–3502. [47] Li E, Kakemoto H, Wada S, et al. Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J. Am. Ceram. Soc., 2007, 90(6): 1787–1791. [48] Zuo R Z, R?del J, Chen R Z, et al. Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc., 2006, 89(6): 2010–2015. [49] Bernard J, Bencan A, Rojac T, et al. Low-temperature sintering of K0.5Na0.5NbO3 ceramics. J. Am. Ceram. Soc., 2008, 91(7): 2409–2411. [50] Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of (K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29 ceramics. J. Appl. Phys., 2005, 97(11)?:114105. [51] Park H Y, Ahn C W, Song H C, et al. Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Appl. Phys. Lett., 2006, 89(6): 062906–1–3. [52] Li Y M, Shen Z Y, Li R R, et al. Effect of BBS-based frit on the low temperature sintering and electrical properties of KNN lead-free piezoceramics. International Journal of Applied Ceramic Technology, 2013, 10(5): 866–872. [53] Wang K,Li J F. Low-temperature sintering of Li-modified (K,Na)NbO3 lead-free ceramics: sintering behavior, microstructure, and electrical properties. J. Am. Ceram. Soc., 2010, 93(4): 1101–1107. [54] Yao F Z, Wang K, Li J F. Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics. J. Appl. Phys., 2013, 113(17): 174105–1–7. [55] Shen Z Y, Wang K, Li J F. Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na, K)NbO3 lead-free piezoceramics. Appl. Phys. A, 2009, 97(4): 911–917. [56] Wang K, Li J F, Zhou J J. High normalized strain obtained in Li-modified (K, Na)NbO3 lead-free piezoceramics. Appl. Phys. Express,2011, 4(6): 061501–1–3. [57] Zhou J J, Li J F, Wang K, et al. Phase structure and electrical properties of (Li,Ta)-doped (K, Na)NbO3 lead-free piezoceramics in the vicinity of Na/K=50/50. J. Mater. Sci., 2011, 46(15): 5111–5116. [58] Cheng L Q, Zhou J J, Wang K, et al. Influence of ball milling on sintering behavior and electrical properties of (Li, Na, K)NbO3 lead-free piezoceramics. J. Mater. Sci., 2012, 47(19): 6908–6914. [59] Wang K, Li J F. (K, Na) NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. Journal of Advanced Ceramics,2012, 1(1): 24–37. [60] Malic B, Bemard J, Bencan A, et al. Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc., 2008, 28(6): 1191–1196. [61] Zhu F, Skidmore T A, Bell A J, et al. Diffuse dielectric behaviour in Na0.5K0.5NbO3-LiTaO3-BiScO3 lead-free ceramics, Mater. Chem. Phys., 2011, 129(1/2): 411–417. [62] Patterson E A, Cann D P. Piezoelectric properties and unipolar fatigue behavior of KNN-based Pb-free piezoceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58(9)?: 1835–1841. [63] Du H L, Liu D J, Tang F S, et al. Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. J. Am. Ceram. Soc., 2007, 90(9): 2824–2829 . [64] Sun X Y, Chen J, Yu R B, et al. BiScO3 doped (Na0.5K0.5)NbO3 lead-Free piezoelectric ceramics. J. Am. Ceram. Soc., 2009, 92(1): 130–132. [65] Chang Y F, Yang Z P, Wei L L. Microstructure, density, and dielectric properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics. J. Am. Ceram. Soc., 2007, 90(5): 1656–1658. [66] Wang Y, Damjanovic D, Klein N, et al. Compositional inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. J. Am. Ceram. Soc., 2007, 90(11): 3485–3489. [67] Yang Z P, Chang Y F, Wei L L. Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett., 2007, 90(4): 042911–1–3. [68] Wang R P, Bando H, Itoh M. Universality in phase diagram of (K, Na)NbO3-MTiO3 solid solutions. Appl. Phys. Lett., 2009, 95(9): 092905–1–3. [69] Zuo R Z, Fu J, Lv D Y. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 system. J. Am. Ceram. Soc.,2009, 92(1): 283–285. [70] Shen Z Y, Zhen Y H, Wang K, et al. Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-Modified (Na, K)NbO3 ceramics. J. Am. Ceram. Soc., 2009, 92(8): 1748–1752. [71] Jaeger R E, Egerton L. Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc., 1962, 45(5): 209–213. [72] Wang R P, Xie R J, Sekiya T, et al. Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull., 2004, 39(11): 1709–1715. [73] Wang K, Zhang B P, Li J F, et al. Lead-free Na0.5K0.5NbO3 piezoelectric ceramics fabricated by spark plasma sintering: Annealing effect on electrical properties. J. Electroceram., 2008, 21(1-4): 251–254. [74] Shen Z Y, Li J F, Wang K, et al. Electrical and mechanical properties of fine-grained Li/Ta-modified (Na,K)NbO3-based piezoceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2010, 93(5): 1378–1383. [75] Zhen Y, Li J F, Wang K, et al. Spark plasma sintering of Li/Ta-modified (K, Na)NbO3 lead-free piezoelectric ceramics: Post-annealing temperature effect on phase structure, electrical properties and grain growth behavior, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2011, 176(14): 1110–1114. [76] Shen Z Y, Li J F, Chen R, et al. Microscale 1-3-Type (Na,K)NbO3- based Pb-free piezocomposites for high-frequency ultrasonic transducer applications. J. Am. Ceram. Soc., 2011, 94(5): 1346–1349. [77] Chang Y F, Poterala S F, Yang Z P, et al. < 001 > textured (K0.5Na0.5)Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett., 2009, 95(23): 232905–1–3. [78] Chang Y F, Poterala S F, Yang Z P, et al. Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth. J. Mater. Res.,2010, 25(4): 687–694. [79] Chang Y, Poterala S, Yang Z, et al. Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3- based piezoelectric ceramics. J. Am. Ceram. Soc., 2011, 94(8): 2494–2498. [80] Yao J J, Li J F, Viehland D, et al. Aging associated domain evolution in the orthorhombic phase of < 001 > textured (K0.5Na0.5)Nb0.97Sb0.03O3 ceramics. Appl. Phys. Lett., 2012, 100: 132902–1–3. [81] Li Y L, Hui C, Wu M J, et al. Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceram. Int., 2012, 38: S283–S286. [82] Lv D Y, Zuo R Z. Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth. J. Alloys Compd., 2013, 560: 62–66. [83] Kawada S, Kimura M, Higuchi Y, et al. (K, Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes. Appl. Phys. Express, 2009, 2(11): 111401–1–3. [84] Kobayashi K, Doshida Y, Mizuno Y, et al. A route forwards to narrow the performance gap between PZT and lead-free piezoelectric ceramic with low oxygen partial pressure processed (Na0.5K0.5)NbO3. J. Am. Ceram. Soc., 2012, 95(9): 2928–2933. [85] Zhang S J, Xia R, Shrout T R, et al. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J. Appl. Phys., 2006, 100(10): 104–108. [86] Hollenstein E, Damjanovic D, Setter N. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J. Eur. Ceram. Soc., 2007, 27(13/14/15): 4093–4097. [87] Morozov M I, Kungl H, Hoffmann M J. Effects of poling over the orthorhombic-tetragonal phase transition temperature in compositionally homogeneous (K, Na)NbO3-based ceramics. Appl. Phys. Lett., 2011, 98(13): 132908–1–3. [88] Zhang S J, Xia R, Shrout T R. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl. Phys. Lett.,2007, 91(13): 132913–1–3. [89] Wu J G, Xiao D Q, Wang Y Y, et al. Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead- free piezoelectric ceramics. J. Appl. Phys., 2008, 104(2): 024102–1–4. [90] Zhao J B, Du H L, Qu S B, et al. Improvement in the piezoelectric temperature stability of (K0.5Na0.5)NbO3 ceramics. Chinese Sci. Bull., 2011, 56(22): 2389–2393. [91] Ge H, Hou Y T, Rao X, et al. The investigation of depoling mechanism of densified KNbO3 piezoelectric ceramic. Appl. Phys. Lett., 2011, 99(3): 032905–1–3. [92] Chang Y F, Yang Z P, Hou Y T, et al. Effects of Li content on the phase structure and electrical properties of lead-free (K0.46-x/2Na0.54-x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett., 2007, 90(23): 232905–1–3. [93] Zhao P, Zhang B P, Li J F. High piezoelectric d33 coefficient in Li-modified lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. Appl. Phys. Lett., 2007, 90(24): 242909–1–3. [94] Du H L, Zhou W C, Luo F, et al. An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl. Phys. Lett., 2007, 91(20): 202907–1–3. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[3] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[4] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[5] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[6] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[7] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[8] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[9] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[10] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[11] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
[12] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[13] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[14] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[15] | CAI Kai, JIN Zhiwen. Photodetector Based on Two-dimensional Perovskite (PEA)2PbI4 [J]. Journal of Inorganic Materials, 2023, 38(9): 1069-1075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||