Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (1): 13-22.DOI: 10.3724/SP.J.1077.2014.10002
• Invited Review • Previous Articles Next Articles
WANG Ke1, SHEN Zong-Yang1,2, ZHANG Bo-Ping3, LI Jing-Feng1
Received:
2013-10-22
Revised:
2013-10-30
Published:
2014-01-20
Online:
2013-12-09
Supported by:
National Natural Science Foundation of China (51332002, 51302144); Ground Plan of Science and Technolagy in Jiangxi Province department of Education (KJLD13076)
CLC Number:
WANG Ke, SHEN Zong-Yang, ZHANG Bo-Ping, LI Jing-Feng. (K, Na)NbO3-based Lead-free Piezoceramics: Status, Prospects and Challenges[J]. Journal of Inorganic Materials, 2014, 29(1): 13-22.
Add to citation manager EndNote|Ris|BibTeX
[1] Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. Academic Press: New York, 1971. [2] Xiao D G. Environmentally conscious ferroelectries research. J. Korean Phys. Soc., 1998, 32(S): S1798?S1800. [3] Ge W , Cao H, Li J, et al. Influence of dc-bias on phase stability in Mn-doped Na0.5Bi0.5TiO3-5.6at%BaTiO3 single crystals. Appl. Phys. Lett., 2009, 95(16): 162903–1–3. [4] Wang K, Li J F. Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater., 2010, 20(12): 1924–1929 . [5] Wang K, Yao F Z, Jo W, et al. Temperature-insensitive (K, Na) NbO3-based lead-free piezo actuator ceramics. Adv. Funct. Mater., 2013, 23: 4079–4086. [6] Wang K, Li J F. Analysis of crystallographic evolution in (Na, K) NbO3-based lead-free piezoceramics by X-ray diffraction, Appl. Phys. Lett., 2007, 91(26) : 262902–1–3. [7] Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3ceramics. Appl. Phys. Lett., 2007, 90(26)?: 262903–1–3. [8] Lu N, Yu R, Cheng Z Y, et al. Ferroelectric polarization and domain walls in orthorhombic (K1-xNax)NbO3 lead-free ferroelectric ceramics. Appl. Phys. Lett., 2010, 96(22)?: 221905–1–3. [9] Xiao D Q, Wu J G, Wu L, et al. Investigation on the composition design and properties study ofperovskite lead-free piezoelectric ceramics. J. Mater. Sci., 2009, 44(19): 5408–5419. [10] Wang L Y, Ren W, Shi P, et al. Enhanced ferroelectric properties in Mn-doped K0.5Na0.5NbO3 thin films derived from chemical solution deposition. Appl. Phys. Lett., 2010, 97(7): 072902–1–3. [11] Fu F, Shen B, Zhai J W, et al. Influence of Mn2+ on the electrical properties of textured KNN thick films. Ceram. Int., 2012, 38: S287–S290. [12] Gao Y, Zhang J L, Qing Y, et al. Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02-(Nb0.77Ta0.18Sb0.05)O3 ceramic. J. Am. Ceram. Soc., 2011, 94(9): 2968–2973. [13] Cheng H L, Du H L, Zhou W C, et al. Effects of LaFeO3?additions on the dielectric and ferroelectric properties of (K0.5Na0.5)NbO3 ceramics. Journal of Inorganic Materials, 2012, 27(11): 1228–1232. [14] Chu R G, Hao J G, Xu Z J, et al. Preparation and characterrization of (K0.5Na0.5)0.94-2xLi0.06SrxNb0.98Sb0.02O3?lead-free piezoelectric ceramics. Journal of Inorganic Materials, 2010, 25(11): 1164?1168. [15] Zuo R, Fu J. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J. Am. Ceram. Soc.,2011, 94(5):1467–1470. [16] JIANG X P, HU X P, JIANG F L, et al. Li-modified sodium potassium tantalum niobate lead-free piezoelectric ceramics. Journal of Inorganic Materials, 2007, 22(3): 465–468. [17] LI Y M, XIAO Z G, SHEN Z Y, et al. Effect of BaZrO3?depend on the structure and electric properties of (K0.49Na0.51)0.98Li0.02- (Nb0.77Ta0.18Sb0.05)O3?lead-free piezoceramics. Journal of Inorganic Materials, 2013, 28(6): 629–634. [18] Fu J, Zuo R Z, Wang X H, et al. Polymorphic phase transition and enhanced piezoelectric properties of LiTaO3-modified (Na0.52K0.48)- (Nb0.93Sb0.07)O3 lead-free ceramics. J. Phys. D: Appl. Phys., 2009, 42(1): 012006–1–4. [19] Liu N, Wang K, Li J F, et al. Hydrothermal synthesis and spark plasma sintering of (K, Na)NbO3 lead-free piezoceramics. J. Am. Ceram. Soc., 2009, 92(8):1884–1887. [20] Zuo R Z, Xu Z K, Li L T. Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics. J. Phys. Chem. Solids., 2008, 69(7):1728–1732. [21] Zhu K J, Su L K, Ji H L, et al. Hydrothermal solvothermal synthesis of (K, Na) NbO3?lead-free piezoelectric ceramics and its properties. Journal of Inorganic Materials, 2010, 25(11): 1159–1163. [22] Smolenskii G A, Isupov V A, Agranovskaya A I, et al. New ferroelectrics of complex composition. Soviet Physics-Solid State,1961, 2(11): 2651–2654. [23] Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys.,1991, 30(9B): 2236–2239. [24] Egerton L, Dillon D M. Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate. J. Am. Ceram. Soc.,1959, 42(9): 438–442. [25] Maeder M D, Damjanovic D, Setter N. Lead free piezoelectric materials. J. Electroceram., 2004 , 13(1/2/3):385–392. [26] Tennery V J, Hang K W. Thermal and X-Ray diffraction studies of NaNbO3-KNbO3 system. J. Appl. Phys., 1968, 39(10): 4749–4753. [27] Megaw H D. Crystal structure of double oxides of the perovskite type. P. Phys. Soc. Lond.,1946, 58(326): 133–152. [28] Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics. Appl. Phys. Lett.,2009, 94(4): 042905–1–3. [29] Damjanovic D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc., 2005, 88(10): 2663–2676. [30] Haun M J, Furman E, Jang S J, et al. Thermodynamic theory of the lead zirconate-titanate solid-solution system, 5. Theoretical Calculations. Ferroelectrics, 1989, 99: 63–86. [31] Haun M J, Zhuang Z Q, Furman E, et al. Thermodynamic theory of the lead zirconate-titanate solid-solution system, 3. Curie constant And 6th-order polarization interaction dielectric stiffness coefficients. Ferroelectrics,1989, 99: 45–54. [32] Damjanovic D, Demartin M. Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. Journal of Physics-Condensed Matter, 1997, 9(23): 4943–4953. [33] Wu L, Zhang J L, Wang C L, et al. Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics. J. Appl. Phys., 2008, 103(8): 084116–1–5. [34] Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2006, 89(2): 706–709. [35] Zhang B P, Li J F, Wang K, et al. Compositionaldependence of piezoelectric properties in NaxK1-xNbO3 lead-free ceramicsprepared by spark plasma sintering. J. Am. Ceram. Soc., 2006, 89(5): 1605–1609. [36] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature, 2004, 432(4): 84–87. [37] Lin D, Kwok K W, Chan H L W. Microstructure, phase transition, and electrical properties of (K0.5Na0.5)1-xLix (Nb1-yTay)O3 lead-free piezoelectric ceramics. J. Appl. Phys., 2007, 102(3): 034102–1–7. [38] Wu J G, Xiaob D Q, Wang Y Y, et al. Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96-xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl. Phys. Lett., 2007, 91(25): 252907–1–3. [39] Akdo?an E K, Kerman K, Abazari M, et al. Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett., 2008, 92(11): 112908–1–3. [40] Zhou J J, Wang K, Li F, et al. High and frequency-insensitive converse piezoelectric coefficient obtained in AgSbO3-modified (Li, K, Na)(Nb,Ta)O3 lead-free piezoceramics. J. Am. Ceram. Soc., 2013, 96(2): 519–523. [41] Li J F, Zhen Y H, Zhang B P, et al. Normal sintering of (K, Na)NbO3- based lead-free piezoelectric ceramics. Ceram. Int., 2008, 34(4): 783–786. [42] Zhou J J, Li J F, Zhang X W. Orthorhombic to tetragonal phase transition due to stress release in (Li,Ta)-doped(K,Na)NbO3 lead-free piezoceramics. J. Eur. Ceram. Soc., 2012, 32(2):267-270. [43] Guo Y P, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett., 2004, 85(18): 4121–4123. [44] Wada S, Yako K, Kakemoto H, et al. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys., 2005, 98(1): 014109–1–7. [45] Sluka T, Tagantsev A K, Damjanovic D, et al. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Commun., 2012, 3: 748–1–7. [46] Zhen Y H, Li J F. Abnormalgrain growth and new core-shell structure in (K, Na)NbO3-based lead-free piezoelectric ceramics. J. Am. Ceram. Soc., 2007, 90(11): 3496–3502. [47] Li E, Kakemoto H, Wada S, et al. Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J. Am. Ceram. Soc., 2007, 90(6): 1787–1791. [48] Zuo R Z, R?del J, Chen R Z, et al. Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc., 2006, 89(6): 2010–2015. [49] Bernard J, Bencan A, Rojac T, et al. Low-temperature sintering of K0.5Na0.5NbO3 ceramics. J. Am. Ceram. Soc., 2008, 91(7): 2409–2411. [50] Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of (K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29 ceramics. J. Appl. Phys., 2005, 97(11)?:114105. [51] Park H Y, Ahn C W, Song H C, et al. Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Appl. Phys. Lett., 2006, 89(6): 062906–1–3. [52] Li Y M, Shen Z Y, Li R R, et al. Effect of BBS-based frit on the low temperature sintering and electrical properties of KNN lead-free piezoceramics. International Journal of Applied Ceramic Technology, 2013, 10(5): 866–872. [53] Wang K,Li J F. Low-temperature sintering of Li-modified (K,Na)NbO3 lead-free ceramics: sintering behavior, microstructure, and electrical properties. J. Am. Ceram. Soc., 2010, 93(4): 1101–1107. [54] Yao F Z, Wang K, Li J F. Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics. J. Appl. Phys., 2013, 113(17): 174105–1–7. [55] Shen Z Y, Wang K, Li J F. Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na, K)NbO3 lead-free piezoceramics. Appl. Phys. A, 2009, 97(4): 911–917. [56] Wang K, Li J F, Zhou J J. High normalized strain obtained in Li-modified (K, Na)NbO3 lead-free piezoceramics. Appl. Phys. Express,2011, 4(6): 061501–1–3. [57] Zhou J J, Li J F, Wang K, et al. Phase structure and electrical properties of (Li,Ta)-doped (K, Na)NbO3 lead-free piezoceramics in the vicinity of Na/K=50/50. J. Mater. Sci., 2011, 46(15): 5111–5116. [58] Cheng L Q, Zhou J J, Wang K, et al. Influence of ball milling on sintering behavior and electrical properties of (Li, Na, K)NbO3 lead-free piezoceramics. J. Mater. Sci., 2012, 47(19): 6908–6914. [59] Wang K, Li J F. (K, Na) NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. Journal of Advanced Ceramics,2012, 1(1): 24–37. [60] Malic B, Bemard J, Bencan A, et al. Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc., 2008, 28(6): 1191–1196. [61] Zhu F, Skidmore T A, Bell A J, et al. Diffuse dielectric behaviour in Na0.5K0.5NbO3-LiTaO3-BiScO3 lead-free ceramics, Mater. Chem. Phys., 2011, 129(1/2): 411–417. [62] Patterson E A, Cann D P. Piezoelectric properties and unipolar fatigue behavior of KNN-based Pb-free piezoceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2011, 58(9)?: 1835–1841. [63] Du H L, Liu D J, Tang F S, et al. Microstructure, piezoelectric, and ferroelectric properties of Bi2O3-added (K0.5Na0.5)NbO3 lead-free ceramics. J. Am. Ceram. Soc., 2007, 90(9): 2824–2829 . [64] Sun X Y, Chen J, Yu R B, et al. BiScO3 doped (Na0.5K0.5)NbO3 lead-Free piezoelectric ceramics. J. Am. Ceram. Soc., 2009, 92(1): 130–132. [65] Chang Y F, Yang Z P, Wei L L. Microstructure, density, and dielectric properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics. J. Am. Ceram. Soc., 2007, 90(5): 1656–1658. [66] Wang Y, Damjanovic D, Klein N, et al. Compositional inhomogeneity in Li- and Ta-modified (K, Na)NbO3 ceramics. J. Am. Ceram. Soc., 2007, 90(11): 3485–3489. [67] Yang Z P, Chang Y F, Wei L L. Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett., 2007, 90(4): 042911–1–3. [68] Wang R P, Bando H, Itoh M. Universality in phase diagram of (K, Na)NbO3-MTiO3 solid solutions. Appl. Phys. Lett., 2009, 95(9): 092905–1–3. [69] Zuo R Z, Fu J, Lv D Y. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 system. J. Am. Ceram. Soc.,2009, 92(1): 283–285. [70] Shen Z Y, Zhen Y H, Wang K, et al. Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-Modified (Na, K)NbO3 ceramics. J. Am. Ceram. Soc., 2009, 92(8): 1748–1752. [71] Jaeger R E, Egerton L. Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc., 1962, 45(5): 209–213. [72] Wang R P, Xie R J, Sekiya T, et al. Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull., 2004, 39(11): 1709–1715. [73] Wang K, Zhang B P, Li J F, et al. Lead-free Na0.5K0.5NbO3 piezoelectric ceramics fabricated by spark plasma sintering: Annealing effect on electrical properties. J. Electroceram., 2008, 21(1-4): 251–254. [74] Shen Z Y, Li J F, Wang K, et al. Electrical and mechanical properties of fine-grained Li/Ta-modified (Na,K)NbO3-based piezoceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2010, 93(5): 1378–1383. [75] Zhen Y, Li J F, Wang K, et al. Spark plasma sintering of Li/Ta-modified (K, Na)NbO3 lead-free piezoelectric ceramics: Post-annealing temperature effect on phase structure, electrical properties and grain growth behavior, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2011, 176(14): 1110–1114. [76] Shen Z Y, Li J F, Chen R, et al. Microscale 1-3-Type (Na,K)NbO3- based Pb-free piezocomposites for high-frequency ultrasonic transducer applications. J. Am. Ceram. Soc., 2011, 94(5): 1346–1349. [77] Chang Y F, Poterala S F, Yang Z P, et al. < 001 > textured (K0.5Na0.5)Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett., 2009, 95(23): 232905–1–3. [78] Chang Y F, Poterala S F, Yang Z P, et al. Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth. J. Mater. Res.,2010, 25(4): 687–694. [79] Chang Y, Poterala S, Yang Z, et al. Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3- based piezoelectric ceramics. J. Am. Ceram. Soc., 2011, 94(8): 2494–2498. [80] Yao J J, Li J F, Viehland D, et al. Aging associated domain evolution in the orthorhombic phase of < 001 > textured (K0.5Na0.5)Nb0.97Sb0.03O3 ceramics. Appl. Phys. Lett., 2012, 100: 132902–1–3. [81] Li Y L, Hui C, Wu M J, et al. Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceram. Int., 2012, 38: S283–S286. [82] Lv D Y, Zuo R Z. Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth. J. Alloys Compd., 2013, 560: 62–66. [83] Kawada S, Kimura M, Higuchi Y, et al. (K, Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes. Appl. Phys. Express, 2009, 2(11): 111401–1–3. [84] Kobayashi K, Doshida Y, Mizuno Y, et al. A route forwards to narrow the performance gap between PZT and lead-free piezoelectric ceramic with low oxygen partial pressure processed (Na0.5K0.5)NbO3. J. Am. Ceram. Soc., 2012, 95(9): 2928–2933. [85] Zhang S J, Xia R, Shrout T R, et al. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J. Appl. Phys., 2006, 100(10): 104–108. [86] Hollenstein E, Damjanovic D, Setter N. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. J. Eur. Ceram. Soc., 2007, 27(13/14/15): 4093–4097. [87] Morozov M I, Kungl H, Hoffmann M J. Effects of poling over the orthorhombic-tetragonal phase transition temperature in compositionally homogeneous (K, Na)NbO3-based ceramics. Appl. Phys. Lett., 2011, 98(13): 132908–1–3. [88] Zhang S J, Xia R, Shrout T R. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl. Phys. Lett.,2007, 91(13): 132913–1–3. [89] Wu J G, Xiao D Q, Wang Y Y, et al. Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead- free piezoelectric ceramics. J. Appl. Phys., 2008, 104(2): 024102–1–4. [90] Zhao J B, Du H L, Qu S B, et al. Improvement in the piezoelectric temperature stability of (K0.5Na0.5)NbO3 ceramics. Chinese Sci. Bull., 2011, 56(22): 2389–2393. [91] Ge H, Hou Y T, Rao X, et al. The investigation of depoling mechanism of densified KNbO3 piezoelectric ceramic. Appl. Phys. Lett., 2011, 99(3): 032905–1–3. [92] Chang Y F, Yang Z P, Hou Y T, et al. Effects of Li content on the phase structure and electrical properties of lead-free (K0.46-x/2Na0.54-x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett., 2007, 90(23): 232905–1–3. [93] Zhao P, Zhang B P, Li J F. High piezoelectric d33 coefficient in Li-modified lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. Appl. Phys. Lett., 2007, 90(24): 242909–1–3. [94] Du H L, Zhou W C, Luo F, et al. An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Appl. Phys. Lett., 2007, 91(20): 202907–1–3. |
[1] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[2] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. |
[3] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[4] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[5] | NAN Bo, ZANG Jiadong, LU Wenlong, YANG Tingwang, ZHANG Shengwei, ZHANG Haibo. Recent Progress on Additive Manufacturing of Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(6): 585-595. |
[6] | LIN Aming, SUN Yiyang. Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations [J]. Journal of Inorganic Materials, 2022, 37(6): 691-696. |
[7] | WANG Xinjian, ZHU Yixuan, ZHANG Peng, YANG Wenlong, WANG Ting, HUAN Yu. Phase Structure and Piezoelectric Property of (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3 Lead-free Piezoceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 513-519. |
[8] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[9] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[10] | ZHANG Fengjuan, HAN Boning, ZENG Haibo. Perovskite Quantum Dot Photovoltaic and Luminescent Concentrator Cells: Current Status and Challenges [J]. Journal of Inorganic Materials, 2022, 37(2): 117-128. |
[11] | WANG Wanhai, ZHOU Jie, TANG Weihua. Passivation Strategies of Perovskite Film Defects for Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(2): 129-139. |
[12] | JIAO Zhixiang, JIA Fanhao, WANG Yongchen, CHEN Jianguo, REN Wei, CHENG Jinrong. Curie Temperature Prediction of BiFeO3-PbTiO3-BaTiO3 Solid Solution Based on Machine Learning [J]. Journal of Inorganic Materials, 2022, 37(12): 1321-1328. |
[13] | XU Tingting, LI Yunyun, WANG Qian, WANG Jingkang, REN Guohao, SUN Dazhi, WU Yuntao. Centimeter-sized Cs3Cu2I5 Single Crystal: Synthesized by Low-cost Solution Method and Optical and Scintillation Properties [J]. Journal of Inorganic Materials, 2022, 37(10): 1129-1134. |
[14] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[15] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||