Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (7): 772-780.DOI: 10.15541/jim20240472
• RESEARCH ARTICLE • Previous Articles Next Articles
TAN Bowen(), GENG Shuanglong, ZHANG Kai(
), ZHENG Bailin(
)
Received:
2024-11-11
Revised:
2025-01-21
Published:
2025-07-20
Online:
2025-02-19
Contact:
ZHENG Bailin, professor. E-mail: blzheng@tongji.edu.cn;About author:
TAN Bowen (1998-), male, Master candidate. E-mail: tan_bowen@tongji.edu.cn
Supported by:
CLC Number:
TAN Bowen, GENG Shuanglong, ZHANG Kai, ZHENG Bailin. Composition-gradient Design of Silicon Electrodes to Mitigate Mechanochemical Coupling Degradation[J]. Journal of Inorganic Materials, 2025, 40(7): 772-780.
Si/% | SP/% | SA/% |
---|---|---|
10 | 70 | 20 |
20 | 60 | 20 |
30 | 50 | 20 |
40 | 40 | 20 |
50 | 30 | 20 |
Table 1 Composition ratios of different Si mass fractions (%, in mass)
Si/% | SP/% | SA/% |
---|---|---|
10 | 70 | 20 |
20 | 60 | 20 |
30 | 50 | 20 |
40 | 40 | 20 |
50 | 30 | 20 |
Fig. 4 Electrochemical performance of different lithium-ion batteries (a) Cycling performance at 0.2C; (b) Capacity retentions after 100 cycles; (c-e) Charging-discharging curves of (c) UD-Si, (d) LG-Si and (e) SG-Si. Colorful figures are available on website
Fig. 6 SEM images of the electrode surfaces and cross-sections after cycling (a-c) Surface: (a) SG-Si, (b) UD-Si, and (c) LG-Si; (d-f) Cross-section: (d) SG-Si, (e) UD-Si, and (f) LG-Si
Fig. 7 Rate performance of lithium-ion batteries and resistances of electrodes (a, b) Nyquist plots of the electrode after (a) formation and (b) cycling; (c) Rate performance of the electrode
Fig. 8 Results of multi-scale electro-chemo-mechanical coupled model (a) Stress distribution of CBD in the surface layer of LG-Si; (b) Stress-strain plots of Si electrodes; (c) Comparison of tangential stresses at the active layer & current collector interfaces; (d) Electrolyte concentration distributions of Si electrodes; (e) Comparison of electrolyte concentration gradients in the thickness direction. Colorful figures are available on website
[1] | LI M, LU J, CHEN Z, et al. 30 years of lithium-ion batteries. Advanced Materials, 2018, 30(33): 1800561. |
[2] | ZENG X, LI M, EL-HADY D A, et al. Commercialization of lithium battery technologies for electric vehicles. Advanced Energy Materials, 2019, 9(27): 1900161. |
[3] | VISWANATHAN V, EPSTEIN A H, CHIANG Y M, et al. The challenges and opportunities of battery-powered flight. Nature, 2022, 601(7894): 519. |
[4] |
DIXIT M, BISHT A, ESSEHLI R, et al. Lithium-ion battery power performance assessment for the climb step of an electric vertical takeoff and landing (eVTOL) application. ACS Energy Letters, 2024, 9(3): 934.
DOI PMID |
[5] | GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond—a 2030 vision. Nature Communications, 2020, 11: 6279. |
[6] | GAO Y, PAN Z, SUN J, et al. High-energy batteries: beyond lithium-ion and their long road to commercialization. Nano-micro Letters, 2022, 14: 94. |
[7] | XU J, CAI X, CAI S, et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environmental Materials, 2023, 6(5): e12450. |
[8] | ZUO X, ZHU J, MULLER-BUSCHBAUM P, et al. Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy, 2017, 31: 113. |
[9] | TAN Y, WANG K. Silicon-based anode materials applied in high specific energy lithium-ion batteries: a review. Journal of Inorganic Materials, 2019, 34(4): 349. |
[10] | PRUSSIN S. Generation and distribution of dislocations by solute diffusion. Journal of Applied Physics, 1961, 32(10): 1876. |
[11] |
WANG Y N, LI H, WANG Z K, et al. Progress on failure mechanism of lithium ion battery caused by diffusion induced stress. Journal of Inorganic Materials, 2020, 35(10): 1071.
DOI |
[12] | LI Y, ZHANG K, YANG F. Generalized theory for DISes in a large deformed solid. International Journal of Applied Mechanics, 2022, 14(4): 2250024. |
[13] | CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials. Journal of Solid State Electrochemistry, 2007, 10(5): 2939. |
[14] | MCDOWELL M T, LEE S W, NIX W D, et al. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Advanced Materials, 2013, 25(36): 4966. |
[15] | SUN L, LIU Y, SHAO R, et al. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Materials, 2022, 46: 482. |
[16] | DE VASCONCELOS L S, XU R, XU Z R, et al. Chemomechanics of rechargeable batteries: status, theories, and perspectives. Chemical Reviews, 2022, 122(15): 13043. |
[17] | LU B, YUAN Y, BAO Y H, et al. Mechanics-based design of lithium-ion batteries: a perspective. Physical Chemistry Chemical Physics, 2022, 24(48): 29279. |
[18] | 吕浡, 陈鑫松, 周志宇, 等. 锂离子电池的劣化: 力-电化学耦合机理与模型. 力学季刊, 2024, 45(2): 287. |
[19] |
LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6(2): 1522.
DOI PMID |
[20] |
WANG J, CHENG Z N, GUO Y Z, et al. Preparation and electrochemical performance of ordered mesoporous Si/C composite for anode material. Journal of Inorganic Materials, 2018, 33(3): 313.
DOI |
[21] | 朱思颖, 李辉阳, 胡忠利, 等. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展. 物理化学学报, 2022, 38(6): 39. |
[22] | CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2007, 3(1): 31. |
[23] | SU N, QIU J S, WANG Z Y. F-doped carbon coated nano-Si anode with high capacity: preparation by gaseous fluorination and performance for lithium storage. Journal of Inorganic Materials, 2023, 38(8): 947. |
[24] | WANG J, CUI Y, WANG D. Design of hollow nanostructures for energy storage, conversion and production. Advanced Materials, 2019, 31(38): 1801993. |
[25] | 温变英. 自然界中的梯度材料及其仿生研究. 材料导报, 2008, 22(S2): 351. |
[26] | YANG Z, XIA Y, JI J, et al. Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries. RSC Advances, 2016, 6(15): 12107. |
[27] | GUO Z Z, YAO L M. Improving the electrochemical performance of Si-based anode via gradient Si concentration. Materials & Design, 2019, 177: 107851. |
[28] | ZHANG W, GUI S, LI W, et al. Functionally gradient silicon/graphite composite electrodes enabling stable cycling and high capacity for lithium-ion batteries. ACS Applied Materials & Interfaces, 2022, 14(46): 51954. |
[29] | DENG J, REN X, LIN H, et al. Functionally gradient materials for sustainable and high-energy rechargeable lithium batteries: design principles, progress, and perspectives. Journal of Energy Chemistry, 2024, 99: 426. |
[30] | SUO Y, YANG F. One-dimensional analysis of the coupling between diffusion and deformation in a bilayer electrode. Acta Mechanica Sinica, 2019, 35(3): 589. |
[31] |
ZHAO Y, STEIN P, BAI Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. Journal of Power Sources, 2019, 413: 259.
DOI |
[32] | XU Y, ZHENG B, ZHANG K, et al. Effect of combining local velocity and chemical reaction on the interaction between diffusion and stresses in large deformed electrodes. AIP Advances, 2019, 9(10): 105103. |
[33] |
CHEN Y, LUAN W L, CHEN H F, et al. Multi-scale failure behavior of cathode in lithium-ion batteries based on stress field. Journal of Inorganic Materials, 2022, 37(8): 918.
DOI |
[34] | SUTHAR B, NORTHROP P W C, RIFE D, et al. Effect of porosity, thickness and tortuosity on capacity fade of anode. Journal of the Electrochemical Society, 2015, 162(9): A1708. |
[35] | CHEN Y, SANG M, JIANG W, et al. Fracture predictions based on a coupled chemo-mechanical model with strain gradient plasticity theory for film electrodes of Li-ion batteries. Engineering Fracture Mechanics, 2021, 253: 107866. |
[36] | GENG S L, ZHOU J W, TAN B W, et al. Impact of thickness and charge rate on the electrochemical performance of Si-based electrodes. Cell Reports Physical Science, 2024, 5(12): 102305. |
[1] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[2] | XUE Dingxi, YI Bingyao, LI Guojun, MA Shuai, LIU Keqin. Numerical Simulation of Thermal Stress in Solid Oxide Fuel Cells with Functional Gradient Anode [J]. Journal of Inorganic Materials, 2024, 39(11): 1189-1196. |
[3] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[4] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[5] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[6] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[7] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[8] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[9] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[10] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[11] | WANG Ying, ZHANG Wenlong, XING Yanfeng, CAO suqun, DAI Xinyi, LI Jingze. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V [J]. Journal of Inorganic Materials, 2021, 36(9): 999-1005. |
[12] | WANG Yanan, LI Hua, WANG Zhengkun, LI Qingfeng, LIAN Chen, HE Xin. Progress on Failure Mechanism of Lithium Ion Battery Caused by Diffusion Induced Stress [J]. Journal of Inorganic Materials, 2020, 35(10): 1071-1087. |
[13] | Jian-Huang KE, Kai XIE, Yu HAN, Wei-Wei SUN, Shi-Qiang LUO, Jin-Feng LIU. Morphology Controlling of the High-voltage Cathode Materials with Different Co-solvents [J]. Journal of Inorganic Materials, 2019, 34(6): 618-624. |
[14] | GUO Rong-Nan, HAN Wei-Qiang. Effects of Structure and Properties of Polar Polymeric Binders on Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2019, 34(10): 1021-1029. |
[15] | LI Bo, HAO Wen, WEN Xiao-Gang. Semi-hollow/Solid ZnMn2O4 Microspheres: Synthesis and Performance in Li Ion Battery [J]. Journal of Inorganic Materials, 2018, 33(3): 307-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||