Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (9): 929-935.DOI: 10.15541/jim20200525
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Kunru1(), HU Xinghui1, ZHANG Zhengfu1, GUO Yuzhong1(
), HUANG Ruian2(
)
Received:
2020-09-08
Revised:
2020-11-08
Published:
2021-09-20
Online:
2020-12-10
Contact:
GUO Yuzhong, professor. E-mail: yzguocn62@sina.com; HUANG Ruian, associate professor. E-mail: hruian@siom.ac.cn
About author:
LI Kunru(1996-), male, Master candidate. E-mail: likunru@stu.kust.edu.cn
Supported by:
CLC Number:
LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile[J]. Journal of Inorganic Materials, 2021, 36(9): 929-935.
Fig. 8 (a) Charge and discharge curves for initial 6 cycles at 0.05 A/g, (b) CV curves at a scanning rate of 0.5 mV/s, (c) cycling performance (1 A/g), and (d) rate capability at different rates of 3D-bio-Si/C
Sample | Si source | Structure | Current density/(A∙g-1) | Capacity/(mAh∙g-1) (Cycle number) | Ref. |
---|---|---|---|---|---|
Si/N-doped C | Rice husk | Spheres | 0.5 | 1031 (100th) | [ |
Si/C | Rice husk | Spheres | 0.1 | 560 (180th) | [ |
Si/N-doped C | Bamboo charcoal | Porous | 0.2 | 603 (120th) | [ |
Si@C/RGO | Bamboo leaf | Nanoparticles | 0.84 | 1900 (100th) | [ |
Si/N-doped C | Horsetail | Nanoparticles | 1 | 750 (760th) | [ |
Si/C | Reed plants | Porous | 0.5 | 1050 (200th) | [ |
Si/C | Rice husk | Bulks | 0.1 | 537 (100th) | [ |
3D-bio-Si/C | Equisetum fluviatile | Porous | 1 | 933 (400th) | This work |
Table 1 Comparison of electrochemical properties for various biomass-derived Si as LIBs anodes
Sample | Si source | Structure | Current density/(A∙g-1) | Capacity/(mAh∙g-1) (Cycle number) | Ref. |
---|---|---|---|---|---|
Si/N-doped C | Rice husk | Spheres | 0.5 | 1031 (100th) | [ |
Si/C | Rice husk | Spheres | 0.1 | 560 (180th) | [ |
Si/N-doped C | Bamboo charcoal | Porous | 0.2 | 603 (120th) | [ |
Si@C/RGO | Bamboo leaf | Nanoparticles | 0.84 | 1900 (100th) | [ |
Si/N-doped C | Horsetail | Nanoparticles | 1 | 750 (760th) | [ |
Si/C | Reed plants | Porous | 0.5 | 1050 (200th) | [ |
Si/C | Rice husk | Bulks | 0.1 | 537 (100th) | [ |
3D-bio-Si/C | Equisetum fluviatile | Porous | 1 | 933 (400th) | This work |
[1] |
FU X W, ZHONG W H. Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Advanced Energy Materials, 2019, 9(40):1901774.
DOI URL |
[2] | REHMAN W U, WANG H F, MANJ R Z A, et al. When silicon materials meet natural sources: opportunities and challenges for low-cost lithium storage. Small, 2019: 1904508. |
[3] |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22:587-603.
DOI URL |
[4] |
LIU Z H, YU Q, ZHAO Y L, et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews, 2019, 48:285-309.
DOI URL |
[5] |
PIPER D M, TRAVIS J J, YOUNG M, et al. Reversible high-capacity Si nanocomposite anodes for lithium-ion batteries enabled by molecular layer deposition. Advanced Materials, 2014, 26(10):1596-1601.
DOI URL |
[6] |
BAO Z H, WEATHERSPOON M R, SHIAN S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 2007, 446:172-175.
DOI URL |
[7] |
DU F D, WANG K X, CHEN J S. Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. Journal of Materials Chemistry A, 2016, 4(1):32-50.
DOI URL |
[8] |
MCDOWELL M T, LEE S W, NIX W D, et al. 25th Anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Advanced Materials, 2013, 25(36):4966-4985.
DOI URL |
[9] |
DU N, ZHANG H, FAN X, et al. Large-scale synthesis of silicon arrays of nanowire on titanium substrate as high-performance anode of Li-ion batteries. Journal of Alloys and Compounds, 2012, 526:53-58.
DOI URL |
[10] |
ZHANG Y C, YOU Y, XIN S, et al. Rice husk-derived hierarchical silicon/nitrogen doped carbon/carbon nanotube spheres as low cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 2016, 25:120-127.
DOI URL |
[11] |
GAO P B, HUANG X, ZHAO Y T, et al. Formation of Si hollow structures as promising anode materials through reduction of silica in AlCl3-NaCl molten salt. ACS Nano, 2018, 12(11):11481-11490.
DOI URL |
[12] |
LUO X, ZHANG H J, PAN W, et al. SiOx nanodandelion by laser ablation for anode of lithium-ion battery. Small, 2015, 11(45):6009-6012.
DOI URL |
[13] |
CHEN Y, LIU L F, XIONG J, et al. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Advanced Functional Materials, 2015, 25:6701-6709.
DOI URL |
[14] |
GREGOIRE C, REMUS-BOREL W, VIVANCOS J, et al. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. Plant Journal, 2012, 72(2):320-330.
DOI URL |
[15] |
SAPEI L, NÖSKE R, STRAUCH P, et al. Isolation of mesoporous biogenic silica from the perennial plant Equisetum hyemale. Chemistry of Materials, 2008, 20:2020-2025.
DOI URL |
[16] |
YU K F, ZHANG H X, QI H, et al. Rice husk as the source of silicon/carbon anode material and stable electrochemical performance. ChemistrySelect, 2018, 3(19):5439-5444.
DOI URL |
[17] | HUANG R A, HU X H, GUO Y Z, et al. Highly Hierarchical fibrillar biogenic silica with mesoporous structure derived from the perennial plant Equisetum fluviatile. ACS Applied Materials & Interfaces, 2020, 12(31):35259-35265. |
[18] |
XIE A T, CUI J Y, YANG J, et al. Photo-Fenton self-cleaning PVDF/NH2-MIL-88B(Fe) membranes towards highly-efficient oil/water emulsion separation. Journal of Membrane Science, 2020, 595:117499.
DOI URL |
[19] |
HASSAN F M, CHABOT V, ELSAYED A R, et al. Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries. Nano Letters, 2014, 14(1):277-283.
DOI URL |
[20] |
HUANG R A, GUO Y Z, CHEN Z N, et al. An easy and scalable approach to synthesize three-dimensional sandwich-like Si/polyaniline/ graphene nanoarchitecture anode for lithium ion batteries. Ceramics International, 2018, 44(4):4282-4286.
DOI URL |
[21] |
LIANG J W, LI X N, HOU Z G, et al. A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries. ACS Nano, 2016, 10(2):2295-2304.
DOI URL |
[22] |
WON C W, NERSISYAN H H, WON H I. Solar-grade silicon powder prepared by combining combustion synthesis with hydrometallurgy. Solar Energy Materials and Solar Cells, 2011, 95(2):745-750.
DOI URL |
[23] | ZHAN J, XU C F, LONG Y Y, et al. Bi2Mn4O10: preparation by polyacrylamide gel method and electrochemical performance. Journal of Inorganic Materials, 2020, 35(7):827-833. |
[24] |
SHELKE M V, GULLAPALLI H, KALAGA K, et al. Facile synthesis of 3D anode assembly with Si nanoparticles sealed in highly pure few layer graphene deposited on porous current collector for long life Li-ion battery. Advanced Materials Interfaces, 2017, 4(10):1601043.
DOI URL |
[25] | 许笑目, 张兴帅, 郭玉忠, 等. 无序介孔硅复合纳米结构的制备与慢活化行为. 高等学校化学学报, 2017, 38(5):713-721. |
[26] |
CHU H Y, WU Q Z, HUANG J G. Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558:495-503.
DOI URL |
[27] | ZHANG C C, CAI X, CHEN W Y, et al. 3D porous silicon/N-doped carbon composite derived from bamboo charcoal as high-performance anode material for lithium ion batteries. ACS Sustainable Chemistry & Engineering, 2018, 6:9930-9939. |
[28] |
WANG L, GAO B, PENG C J, et al. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes. Nanoscale, 2015, 7:13840-13847.
DOI URL |
[29] |
HE Y Y, XU G, WANG C S, et al. Horsetail-derived Si@N-doped carbon as low-cost and long cycle life anode for Li-ion half/full cells. Electrochimica Acta, 2018, 264:173-182.
DOI URL |
[30] |
LIU J, KOPOLD P, PETER A V A, et al. Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angewandte Chemie International Edition, 2015, 54(33):9632-9636.
DOI URL |
[1] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[2] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
[3] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[4] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[5] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[6] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[7] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[8] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[9] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[10] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[11] | WANG Ying, ZHANG Wenlong, XING Yanfeng, CAO suqun, DAI Xinyi, LI Jingze. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V [J]. Journal of Inorganic Materials, 2021, 36(9): 999-1005. |
[12] | CHEN Lichi, WANG Yaogong, WANG Wenjiang, MA Xiaoqin, YANG Jingyuan, ZHANG Xiaoning. Preparation of Silicon Nanowires and Porous Silicon Composite Structure by Electrocatalytic Metal Assisted Chemical Etching [J]. Journal of Inorganic Materials, 2021, 36(6): 608-614. |
[13] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[14] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[15] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||