Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (9): 999-1005.DOI: 10.15541/jim20200576
• RESEARCH LETTER • Previous Articles Next Articles
WANG Ying1(), ZHANG Wenlong1, XING Yanfeng1(), CAO suqun2, DAI Xinyi3, LI Jingze4()
Received:
2020-09-30
Revised:
2021-01-07
Published:
2021-09-20
Online:
2021-01-25
Contact:
XING Yanfeng, professor. E-mail: smsmsues@163.com; LI Jingze, professor. E-mail: lijingze@uestc.edu.cn
About author:
WANG Ying (1978-), female, lecturer. E-mail: wangyingcae@sues.edu.cn
Supported by:
CLC Number:
WANG Ying, ZHANG Wenlong, XING Yanfeng, CAO suqun, DAI Xinyi, LI Jingze. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V[J]. Journal of Inorganic Materials, 2021, 36(9): 999-1005.
Sample | Cycle No. | Rs/Ω | Rf1/Ω | Rf2/Ω | Rct/Ω |
---|---|---|---|---|---|
LTOLPO00 | 10 | 5 | 15 | - | 86 |
LTOLPO20 | 10 | 5 | 21 | 180 | 54 |
LTOLPO00 | 100 | 5 | 364 | - | 1019 |
LTOLPO20 | 100 | 7 | 25 | 146 | 216 |
Sample | Cycle No. | Rs/Ω | Rf1/Ω | Rf2/Ω | Rct/Ω |
---|---|---|---|---|---|
LTOLPO00 | 10 | 5 | 15 | - | 86 |
LTOLPO20 | 10 | 5 | 21 | 180 | 54 |
LTOLPO00 | 100 | 5 | 364 | - | 1019 |
LTOLPO20 | 100 | 7 | 25 | 146 | 216 |
[1] |
ZAGHIB K, SIMONEAU M, ARMAND M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. Journal of Power Sources, 1999, 81-82:300-305.
DOI URL |
[2] |
CHOI S H, KWON T, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 2017, 357(6348):279-283.
DOI URL |
[3] |
ZHONG Z Y, OUYANG C, SHI S Q, et al. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. ChemPhysChem, 2008, 9(14):2104-2108.
DOI URL |
[4] |
STENINA I A, SOBOLEV A N, YAROSLAVTSEV S, et al. Influence of iron doping on structure and electrochemical properties of Li4Ti5O12. Electrochimica Acta, 2016, 219:524-530.
DOI URL |
[5] |
BHATTI H S, ANJUM D H, ULLAH S, et al. Electrochemical characteristics and Li+ ion intercalation kinetics of dual-phase Li4Ti5O12/Li2TiO3 composite in the voltage range 0-3 V. The Journal of Physical Chemistry C, 2016, 120(18):9553-9561.
DOI URL |
[6] |
WANG Y, REN Y, DAI X Y, et al. Electrochemical performance of ZnO-coated Li4Ti5O12 composite electrodes for lithium-ion batteries with the voltage ranging from 3 to 0.01 V. Royal Society Open Science, 2018, 5(10):180762.
DOI URL |
[7] |
JIANG S, ZHAO B, CHEN Y, et al. Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. Journal of Power Sources, 2013, 238:356-365.
DOI URL |
[8] |
JUNG Y S, CAVANAGH A S, RILEY L A, et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Advanced Materials, 2010, 22(19):2172-2176.
DOI URL |
[9] |
LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 2016, 28(9):1853-1858.
DOI URL |
[10] |
WANG Y, ZHOU A J, DAI X Y, et al. Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries. Journal of Power Sources, 2014, 266:114-120.
DOI URL |
[11] |
LU X, ZHAO L, HE X Q, et al. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Advanced Materials, 2012, 24(24):3233-3238.
DOI URL |
[12] |
TAN G Q, WU F, LI L, et al. Coralline glassy lithium phosphate- coated LiFePO4 cathodes with improved power capability for lithium ion batteries. Journal of Physical Chemistry C, 2013, 117(12):6013-6021.
DOI URL |
[13] |
LEE S W, KIM M S, JEONG J H, et al. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted Sol-Gel method: improved thermal stability and high-voltage performance. Journal of Power Sources, 2017, 360:206-214.
DOI URL |
[14] |
HIRAYAMA M, KIM K, TOUJIGAMORI T, et al. Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes. Dalton Transactions, 2011, 40(12):2882-2887.
DOI URL |
[15] |
ZHAO L, HU Y S, LI H, et al. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Advanced Materials, 2011, 23(11):1385-1388.
DOI URL |
[16] | HALL D S, GAUTHIER R, ELDESOKY A, et al. New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells. ACS Applied Materials & Interfaces, 2019, 11(15):14095-14100. |
[17] |
BORGHOLS W J H, WAGEMAKER M, LAFONT U, et al. Size effects in the Li4+xTi5O12 spinel. Journal of the American Chemical Society, 2009, 131(49):17786-17792.
DOI URL |
[18] |
GANAPATHY S, WAGEMAKER M J A N. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano, 2012, 6(10):8702-8712.
DOI URL |
[19] |
WAGEMAKER M, SIMON D R, KELDER E M, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Advanced Materials, 2010, 18(23):3169-3173.
DOI URL |
[20] |
JUNG Y S, LU P, CAVANAGH A S, et al. Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Advanced Energy Materials, 2013, 3(2):213-219.
DOI URL |
[21] |
MOGUSMILANKOVIC A, SANTIC A, KARABULUT M, et al. Study of electrical properties of MoO3-Fe2O3-P2O5 and SrO-Fe2O3-P2O5 glasses by impedance spectroscopy. II. Journal of Non-Crystalline Solids, 2003, 330(1/2/3):128-141.
DOI URL |
[22] |
AHN D, XIAO X J E C. Extended lithium titanate cycling potential window with near zero capacity loss. Electrochemistry Communications, 2011, 13(8):796-799.
DOI URL |
[23] |
GE H, LI N, LI D Y, et al. Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation. Journal of Physical Chemistry C, 2009, 113(16):6324-6326.
DOI URL |
[24] |
LEVI M D, SALITRA G, MARKOVSKY B, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. Journal of The Electrochemical Society, 1999, 146(4):1279-1289.
DOI URL |
[1] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[2] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[3] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
[4] | ZHU Hezhen, WANG Xuanpeng, HAN Kang, YANG Chen, WAN Ruizhe, WU Liming, MAI Liqiang. Enhanced Lithium Storage Stability Mechanism of Ultra-high Nickel LiNi0.91Co0.06Al0.03O2@Ca3(PO4)2 Cathode Materials [J]. Journal of Inorganic Materials, 2022, 37(9): 1030-1036. |
[5] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[6] | CHEN Ying, LUAN Weiling, CHEN Haofeng, ZHU Xuanchen. Multi-scale Failure Behavior of Cathode in Lithium-ion Batteries Based on Stress Field [J]. Journal of Inorganic Materials, 2022, 37(8): 918-924. |
[7] | SU Dongliang, CUI Jin, ZHAI Pengbo, GUO Xiangxin. Mechanism Study on Garnet-type Li6.4La3Zr1.4Ta0.6O12 Regulating the Solid Electrolyte Interphases of Si/C Anodes [J]. Journal of Inorganic Materials, 2022, 37(7): 802-808. |
[8] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[9] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[10] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[11] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[12] | ZHAO Changjiang,MA Chao,LIU Juncheng,LIU Zhigang,CHEN Yan. Sputtering Power on the Microstructure and Properties of MgF2 Thin Films Prepared with Magnetron Sputtering [J]. Journal of Inorganic Materials, 2020, 35(9): 1064-1070. |
[13] | LI Rui,WANG Hao,FU Qiang,TIAN Ziyu,WANG Jianxu,MA Xiaojian,YANG Jian,QIAN Yitai. Stable Li-metal Depositon on Lithiophilic 3D CuO Nanosheet-decorated Cu Mesh [J]. Journal of Inorganic Materials, 2020, 35(8): 882-888. |
[14] | ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 827-833. |
[15] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||