Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (5): 449-456.DOI: 10.15541/jim20250006
• PERSPECTIVE • Next Articles
CHEN Xi1(), YUAN Yuan1, TAN Yeqiang2(
), LIU Changsheng1(
)
Received:
2025-01-06
Revised:
2025-01-17
Published:
2025-05-20
Online:
2025-01-24
Contact:
TAN Yeqiang, professor. E-mail: tanyq@nsfc.gov.cn;About author:
CHEN Xi (1986-), female, associate professor. E-mail: chenxi@ecust.edu.cn
Supported by:
CLC Number:
CHEN Xi, YUAN Yuan, TAN Yeqiang, LIU Changsheng. Strategic Study on the Development of Inorganic Non-metallic Biomaterials[J]. Journal of Inorganic Materials, 2025, 40(5): 449-456.
[1] |
PEI Z F, LEI H L, CHENG L. Bioactive inorganic nanomaterials for cancer theranostics. Chemical Society Reviews, 2023, 52(6):2031.
DOI PMID |
[2] | IELO I, CALABRESE G, DE LUCA G, et al. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. International Journal of Molecular Sciences, 2022, 23(17): 25. |
[3] | YANG S B, LI Y S. Fluorescent hybrid silica nanoparticles and their biomedical applications. WIREs Nanomedicine and Nanobiotechnology, 2020, 12(3): 20. |
[4] | ARCOS D, VALLET-REGÍ M. Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 2020, 8(9): 1781. |
[5] | WU C T, CHANG J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. Journal of Controlled Release, 2014, 193: 282. |
[6] | 鞠银燕, 陈晓峰, 王迎军. 生物活性玻璃多孔材料的制备及性能研究. 硅酸盐通报, 2005(3): 9. |
[7] | VALLET-REGÍ M, COLILLA M, IZQUIERDO-BARBA I, et al. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules, 2018, 23: 47. |
[8] | CHEN F, GOEL S, VALDOVINOS H F, et al. In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano, 2015, 9(8): 7950. |
[9] | CHEN L, DENG C J, LI J Y, et al. 3D printing of a lithium- calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials, 2019, 196: 138. |
[10] | WANG X Y, ZHANG M, MA J G, et al. 3D printing of cell-container-like scaffolds for multicell tissue engineering. Engineering, 2020, 6(11): 1276. |
[11] | TANG Z R, LI X F, TAN Y F, et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regenerative Biomaterials, 2018, 5(1): 43. |
[12] | WANG Y J. Bioadaptability: an innovative concept for biomaterials. Journal of Materials Science & Technology, 2016, 32(9): 801. |
[13] | LI Y L, XIAO Y, LIU C S. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chemical Reviews, 2017, 117(5): 4376. |
[14] | ELIAZ N, METOKI N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials, 2017, 10(4): 104. |
[15] | CHEN R, WANG J, LIU C S. Biomaterials act as enhancers of growth factors in bone regeneration. Advanced Functional Materials, 2016, 26(48): 8810. |
[16] | NIU H Y, MA Y F, WU G Y, et al. Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis. Biomaterials, 2019, 216: 17. |
[17] | DAI K, GENG Z, ZHANG W C, et al. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. National Science Review, 2024, 11(5): 15. |
[18] | 王靖, 刘昌胜. 材料生物学——骨修复材料的机遇与挑战. 中国材料进展, 2019, 38(4): 359. |
[19] | WANG Y, XIE F R, HE Z R, et al. Senescence-targeted and NAD+-dependent SIRT1-activated nanoplatform to counteract stem cell senescence for promoting aged bone regeneration. Small, 2024, 20(12): 16. |
[20] | HE Z R, SUN C H, MA Y F, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel. Advanced Materials, 2024, 36(9): 15. |
[21] | ZHENG J Q, LU X, LU Y J, et al. Functional bioadaptability in medical bioceramics: biological mechanism and application. Journal of Inorganic Materials, 2024, 39(1): 1. |
[22] | LIU X, MIAO Y L, LIANG H F, et al. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone-implant interface in vivo. Bioactive Materials, 2022, 12: 120. |
[23] | LU Q J, DIAO J J, WANG Y Q, et al. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration. Bioactive Materials, 2023, 26: 413. |
[24] | 王晓亚, 常江. 生物陶瓷在组织工程中的应用. 生命科学, 2020, 32(3): 257. |
[25] | ZHANG M, QIN C, WANG Y F, et al. 3D printing of tree-like scaffolds for innervated bone regeneration. Additive Manufacturing, 2022, 54: 10. |
[26] | ZHANG H J, ZHANG M, ZHAI D, et al. Polyhedron-like biomaterials for innervated and vascularized bone regeneration. Advanced Materials, 2023, 35(42): 14. |
[27] | ZHANG H J, QIN C, ZHANG M, et al. Calcium silicate nanowires-containing multicellular bioinks for 3D bioprinting of neural-bone constructs. Nano Today, 2022, 46: 15. |
[28] | ZHANG H J, MA W P, MA H S, et al. Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Advanced Healthcare Materials, 2022, 11(10): 13. |
[29] | ZHANG H J, QIN C, SHI Z, et al. Bioprinting of inorganic- biomaterial/neural-stem-cell constructs for multiple tissue regeneration and functional recovery. National Science Review, 2024, 11(4): 17. |
[30] | TANG L, ZHANG A N, ZHANG Z Y, et al. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Communications, 2022, 42(2): 141. |
[31] | WANG X W, ZHONG X Y, LI J X, et al. Inorganic nanomaterials with rapid clearance for biomedical applications. Chemical Society Reviews, 2021, 50(15): 8669. |
[32] | SONG G S, HAO J L, LIANG C, et al. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angewandte Chemie International Edition, 2016, 55(6):2122. |
[33] | YANG Y, WU H, LIU B, et al. Tumor microenvironment- responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Advanced Drug Delivery Reviews, 2021, 179: 23. |
[34] | ZHANG A M, XIAO Z S, LIU Q F, et al. CaCO3-encapuslated microspheres for enhanced transhepatic arterial embolization treatment of hepatocellular carcinoma. Advanced Healthcare Materials, 2021, 10(19): 13. |
[35] | WANG D, ZHANG L, YANG W H, et al. Arginine-loaded nano-calcium-phosphate-stabilized lipiodol pickering emulsions potentiates transarterial embolization-immunotherapy. Advanced Science, 2024, 12(6): 2410484. |
[36] | LI Q F, CHAO Y, LIU B, et al. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Biomaterials, 2022, 291: 13. |
[37] | GONG F, XU J C, LIU B, et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem, 2022, 8(1): 268. |
[38] | YANG N L, GONG F, LIU B, et al. Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth. Nature Communications, 2022, 13: 12. |
[39] | DONG X L, SUN Y, LI Y Y, et al. Synergistic combination of bioactive hydroxyapatite nanoparticles and the chemotherapeutic doxorubicin to overcome tumor multidrug resistance. Small, 2021, 17(18): 12. |
[40] | DONG X L, ZANG C Y, SUN Y, et al. Hydroxyapatite nanoparticles induced calcium overload-initiated cancer cell-specific apoptosis through inhibition of PMCA and activation of calpain. Journal of Materials Chemistry B, 2023, 11(32): 7609. |
[41] | MA X Y, CHEN Y Y, QIAN J C, et al. Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method. Materials Chemistry and Physics, 2016, 183: 220. |
[42] | SHEN T, WANG H, ZHANG S Q, et al. Safe, simple and multifunctional hydroxyapatite nanoparticles for efficient overcoming of tumor multidrug resistance. Applied Materials Today, 2024, 40: 15. |
[43] | SUN Y, CHEN Y Y, MA X Y, et al. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Applied Materials & Interfaces, 2016, 8(39): 25680. |
[44] | CHEN S Y, XING Z Y, GENG M Y, et al. Macrophage fusion event as one prerequisite for inorganic nanoparticle-induced antitumor response. Science Advances, 2023, 9(29): 14. |
[45] | WANG R Q, HUA Y C, WU H F, et al. Hydroxyapatite nanoparticles promote TLR4 agonist-mediated anti-tumor immunity through synergically enhanced macrophage polarization. Acta Biomaterialia, 2023, 164: 626. |
[46] | ZHAO H, WU C H, GAO D, et al. Antitumor effect by hydroxyapatite nanospheres: activation of mitochondria dependent apoptosis and negative regulation of phosphatidylinositol-3- kinase/protein kinase B pathway. ACS Nano, 2018, 12(8): 7838. |
[47] | LUTHER D C, HUANG R, JEON T, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Advanced Drug Delivery Reviews, 2020, 156: 188. |
[48] | ANSELMO A C, MITRAGOTRI S. A review of clinical translation of inorganic nanoparticles. AAPS Journal, 2015, 17(5): 1041. |
[49] | LI X L, JIANG C, JIA X L, et al. Dual "unlocking" strategy to overcome inefficient nanomedicine delivery and tumor hypoxia for enhanced photodynamic-immunotherapy. Advanced Healthcare Materials, 2023, 12(6): 9. |
[50] | NIU D C, LIU Z J, LI Y S, et al. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery. Advanced Materials, 2014, 26(29): 4947. |
[51] | SHEN L Y, PAN S, NIU D C, et al. Facile synthesis of organosilica- capped mesoporous silica nanocarriers with selective redox- triggered drug release properties for safe tumor chemotherapy. Biomaterials Science, 2019, 7(5): 1825. |
[52] | QIU Y W, LUO Y J, QIN Y C, et al. Efficient synthesis of multi-responsive MSN sensitive to ROS, pH and temperature with significant anticancer effects. Materials Letters, 2024, 365: 5. |
[53] | LIU H M, DU Y Y, ST-PIERRE J P, et al. Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Science Advances, 2020, 6(13): 14. |
[54] | LIU X L, JIANG S T, JIANG T, et al. Bioenergetic-active exosomes for cartilage regeneration and homeostasis maintenance. Science Advances, 2024, 10(42): 18. |
[1] | LI Shiqi, BAO Qunqun, HU Ping, SHI Jianlin. Anti-metastatic Immunotherapy of Advanced Tumors Based on EDTA Intercalated Zinc-aluminum Layered Double Hydroxide [J]. Journal of Inorganic Materials, 2024, 39(9): 1044-1052. |
[2] | CHEN Mengjie, WANG Qianqian, WU Chengtie, HUANG Jian. Predicting the Degradability of Bioceramics through a DFT-based Descriptor [J]. Journal of Inorganic Materials, 2024, 39(10): 1175-1181. |
[3] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[4] | SHI Zhe, LIU Weiye, ZHAI Dong, XIE Jianjun, ZHU Yufang. Akermanite Scaffolds for Bone Tissue Engineering: 3D Printing Using Polymer Precursor and Scaffold Properties [J]. Journal of Inorganic Materials, 2023, 38(7): 763-770. |
[5] | SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial [J]. Journal of Inorganic Materials, 2022, 37(9): 983-990. |
[6] | ZHANG Hang, HAN Kunyuan, DONG Lanlan, LI Xiang. Preparation and Characterization of β-tricalcium Phosphate/Nano Clay Composite Scaffolds via Digital Light Processing Printing [J]. Journal of Inorganic Materials, 2022, 37(10): 1116-1122. |
[7] | XU Hongyi, ZHAI Dong, CAO Wanting, CHEN Zhenhua, QIAN Wenhao, CHEN Lei. Mineralization Activity of Li2Ca2Si2O7 Bioceramics [J]. Journal of Inorganic Materials, 2021, 36(7): 753-760. |
[8] | DONG Shaojie,WANG Xudong,SHEN Steve Guofang,WANG Xiaohong,LIN Kaili. Research Progress on Functional Modifications and Applications of Bioceramic Scaffolds [J]. Journal of Inorganic Materials, 2020, 35(8): 867-881. |
[9] | XIAO Wen, LIU Yu-Mei, REN Kai-Ge, SHI Feng, LI Yan, ZHI Wei, WENG Jie, QU Shu-Xin. Evaluation of Vascularization of Porous Calcium Phosphate by Chick Chorioallantoic Membrane Model ex vivo [J]. Journal of Inorganic Materials, 2017, 32(6): 649-654. |
[10] | LI Gen, LI Jiong-Jiong, LI Li-Mei, JIANG Jia-Xing, LI Yu-Bao, LI Ji-Dong. Preparation of Calcium Phosphate/Polyurethane Composite Porous Scaffolds for Bone Repair by in situ Self-foaming Method [J]. Journal of Inorganic Materials, 2016, 31(7): 719-725. |
[11] | CHEN Xue-Ning, FAN Hong-Song, WANG Hong-Jun. Effect of Phase Composition of Calcium Phosphate (CaP) on Bioactivity of Osteon-like Composite Scaffolds [J]. Journal of Inorganic Materials, 2016, 31(1): 107-112. |
[12] | WANG Quan-Xiang, WU Ying-Yang, DONG Xie-Ping, MA Xu-Hui, WEI Jie. Magnesium Phosphate/PBS/Wheat Protein Biocomposite for Bone Repair [J]. Journal of Inorganic Materials, 2015, 30(9): 957-962. |
[13] | HUANG Ping, LI Peng, ZHAO Jun-Sheng, QU Shu-Xin, FENG Bo, WENG Jie. Mechanical Activation Reinforced Porous Calcium Phosphate Cement [J]. Journal of Inorganic Materials, 2015, 30(4): 432-438. |
[14] | ZHAO Jun-Sheng, QU Shu-Xin, HUANG Ping, LIU Zong-Guang, WANG Shi-Wen, WENG Jie. Calcium Phosphate Cement Reinforced by Nanocrystalline Cellulose [J]. Journal of Inorganic Materials, 2015, 30(3): 318-324. |
[15] | DAI Hong-Lian, HU Fu-Jian, FANG Cai-Ping, LI Shi-Pu. Study on the Injectable Magnesium-calcium Phosphate Cements [J]. Journal of Inorganic Materials, 2014, 29(9): 991-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||