Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (4): 372-378.DOI: 10.15541/jim20240319
• RESEARCH ARTICLE • Previous Articles Next Articles
NI Xiaomeng1(), XU Fangxian1, LIU Jingjing1, ZHANG Shuai1,3(
), GUO Huafei2,3(
), YUAN Ningyi1,3
Received:
2024-07-05
Revised:
2024-10-23
Published:
2024-11-15
Online:
2024-11-15
Contact:
ZHANG Shuai, associate professor. E-mail: shuaizhang@cczu.edu.cn;About author:
NI Xiaomeng (1999-), female, Master candidate. E-mail: 1102604931@qq.com
Supported by:
CLC Number:
NI Xiaomeng, XU Fangxian, LIU Jingjing, ZHANG Shuai, GUO Huafei, YUAN Ningyi. Photovoltaic Performance of Sb2(S,Se)3 Film Enhanced by Addition of Formamidinesulfinic Acid[J]. Journal of Inorganic Materials, 2025, 40(4): 372-378.
Fig. 1 Crystal structure and chemical states of Sb2(S,Se)3 films (a) XRD spectra; (b) Texture coefficients; (c) Raman spectra; (d-f) XPS spectra. Colorful figures are available on website
Fig. 3 Energy-level characterizations of Sb2(S,Se)3 films (a) UPS spectra; (b) Schematic diagram of energy levels. Colorful figures are available on website
Fig. 4 Photovoltaic properties of FSA-0 and FSA-0.1 solar cells (a-d) Statistical distributions of photovoltaic parameters; (e) Schematic diagram of the device structure; (f) Normalized PCE. Colorful figures are available on website
Fig. 5 Photovoltaic properties and defect analysis for the best devices of FSA-0 and FSA-0.1 (a) J-V curves; (b) EQE spectra; (c) Dark J-V curves; (d) EIS plots; (e) C-V curves; (f) NCV curves
Sample | Rs | Rrec | CPE |
---|---|---|---|
FSA-0 | 50.77 | 974.3 | 1.08×10−8 |
FSA-0.1 | 49.08 | 3147 | 1.44×10−9 |
Table 1 Fitting data of EIS plots for Sb2(S,Se)3 solar cells (Ω·cm−2)
Sample | Rs | Rrec | CPE |
---|---|---|---|
FSA-0 | 50.77 | 974.3 | 1.08×10−8 |
FSA-0.1 | 49.08 | 3147 | 1.44×10−9 |
Fig. S1 Fourier transform infrared spectra of Sb2(S,Se)3 thin films (FSA-0 and FSA-0.1) and FSA powder Partial enlargements of (b) N-H and (c) S=O characteristic peaks
Fig. S5 Photovoltaic properties of devices prepared with different concentrations of FSA (a) J-V curves; (b-e) Photovoltaic parameter statistical distribution
[1] | TANG R, WANG X, LIAN W, et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nature Energy, 2020, 5(8):587. |
[2] | PAN Y, HU X, GUO Y, et al. Vapor transport deposition of highly efficient Sb2(S,Se)3 solar cells via controllable orientation growth. Advanced Functional Materials, 2021, 31(28):2101476. |
[3] | GAO J, CHE B, CAI H, et al. Single-source thermal evaporation converts anion controllable Sb2(S,Se)3 film for fabricating high- efficiency solar cell. Science China Materials, 2023, 66(9):3415. |
[4] | CALIXTO-RODRIGUEZ M, GACIA H M, NAIR M T S, et al. Antimony chalcogenide/lead selenide thin film solar cell with 2.5% conversion efficiency prepared by chemical deposition. ECS Journal of Solid State Science and Technology, 2013, 2(4):Q69. |
[5] | ZHANG L, ZHENG J, LIU C, et al. Over 10% efficient Sb2(S,Se)3 solar cells enabled by CsI-doping strategy. Small, 2024, 20(27):2310418. |
[6] | ZHAO Y, WANG S, JIANG C, et al. Regulating energy band alignment via alkaline metal fluoride assisted solution post-treatment enabling Sb2(S,Se)3solar cells with 10.7% efficiency. Advanced Energy Materials, 2021, 12(1):2103015. |
[7] | NICOLAS-MARIN M M, GONZALEX-CASTILLO J R, VIGIL- GALAN O, et al. The state of the art of Sb2(S, Se)3 thin film solar cells: current progress and future prospect. Journal of Physics D: Applied Physics, 2022, 55(30):303001. |
[8] | LI J, ZHAO Y, LI C, et al. Hydrazine hydrate-induced surface modification of CdS electron transport layer enables 10.30%- efficient Sb2(S,Se)3 planar solar cells. Advanced Science, 2022, 9(25):2202356. |
[9] | YAO L, LIN L, LIU H, et al. Front and back contact engineering for high-efficient and low-cost hydrothermal derived Sb2(S, Se)3 solar cells by using FTO/SnO2 and carbon. Journal of Materials Science & Technology, 2020, 58: 130. |
[10] | XING Y, GUO H, LIU J, et al. High-efficiency Sb2(S,Se)3 solar cells with MoO3 as a hole-transport layer. Journal of Alloys and Compounds, 2022, 927: 166842. |
[11] | ZHAO Y, LI C, NIU J, et al. Zinc-based electron transport materials for over 9.6%-efficient S-rich Sb2(S,Se)3 solar cells. Journal of Materials Chemistry A, 2021, 9(21):12644. |
[12] | LIU J, NI X, XU F, et al. Optimizing the Se/S atom ratio and suppressing Sb2O3 impurities in hydrothermal deposition of Sb2(S,Se)3 films via Na plus doping. Physica B: Condensed Matter, 2023, 668: 415221. |
[13] | GUO H, HUANG S, ZHU H, et al. Enhancement in the efficiency of Sb2Se3 solar cells by triple function of lithium hydroxide modified at the back contact interface. Advanced Science, 2023, 10(31):2304246. |
[14] | LI J, GAO Z, HU X, et al. Defects passivation via potassium iodide post-treatment for antimony selenosulfide solar cells with improved performance. Advanced Functional Materials, 2022, 33(10):2211657. |
[15] | TANG R, CHEN S, ZHENG Z, et al. Heterojunction annealing enabling record open-circuit voltage in antimony triselenide solar cells. Advanced Materials, 2022, 34(14):2109078. |
[16] | WANG W, WANG X, CHEN G, et al. Over 6% certified Sb2(S,Se)3 solar cells fabricated via in situ hydrothermal growth and postselenization. Advanced Electronic Materials, 2019, 5(2):1800683. |
[17] | ABDEL-SHAKOUR M, MAUSUISHI K, CHOWDHURY T H, et al. Regulated oxidation and moisture permeation via sulfinic acid based additive enables highly efficient and stable tin-based perovskite solar cells. Solar Energy Materials and Solar Cells, 2023, 254: 112241. |
[18] | XIAO K, LIN R, HAN Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant. Nature Energy, 2020, 5(11):870. |
[19] | LI H, LIN L, YAO L, et al. High-efficiency Sb2(S,Se)3 solar cells with new hole transport layer-free back architecture via 2D titanium- carbide MXene. Advanced Functional Materials, 2022, 32(10):2110335. |
[20] |
ZHANG F, HAN B, ZENG H. Perovskite quantum dot photovoltaic and luminescent concentrator cells: current status and challenges. Journal of Inorganic Materials, 2022, 37(2):117.
DOI |
[21] | CHEN C, LI K, CHEN S, et al. Efficiency improvement of Sb2Se3 solar cells via grain boundary inversion. ACS Energy Letters, 2018, 3(10):2335. |
[22] | WU F, ZHAO Y, YAO L, et al. Manipulating back contact enables over 8%-efficient carbon-based Sb2(S,Se)3 solar cells. Chemical Engineering Journal, 2022, 440: 135872. |
[23] | CHEN X, CHE B, ZHAO Y, et al. Solvent-assisted hydrothermal deposition approach for highly-efficient Sb2(S,Se)3 thin-film solar cells. Advanced Energy Materials, 2023, 13(21):2300391. |
[24] | MAO X, BIAN M, WANG C, et al. Ultrathin SnO2 buffer layer aids in interface and band engineering for Sb2(S,Se)3 solar cells with over 8% efficiency. ACS Applied Energy Materials, 2022, 5(3):3022. |
[25] | WANG Y, JIAO Y, GUO J, et al. Optimization of interfacial engineering of perovskite solar cells. Journal of Inorganic Materials, 2023, 38(11):1323. |
[26] | XIA Z, ZHANG W, CHEN C, et al. Improving performance of Cs2AgBiBr6 solar cell through constructing gradient energy level with deep-level hole transport material. Rare Metals, 2023, 42(9):3004. |
[27] | WU J, LV Y, WANG J, et al. Performance improvement of Sb2Se3 thin-film solar cells through ultraviolet ozone treatment. Rare Metals, 2022, 41(8):2671. |
[28] | CHEN T, LUO Y, ZHU L, et al. Organic-inorganic co-addition to improve mechanical bending and environmental stability of flexible perovskite solar cells. Journal of Inorganic Materials, 2024, 39(5):477. |
[29] | SHIEL H, HOBSON T, HUTTER O, et al. Band alignment of Sb2O3 and Sb2Se3. Journal of Applied Physics, 2021, 129: 235301. |
[30] | ZHANG S, LU Y, LIN B, et al. PVDF-HFP additive for visible- light-semitransparent perovskite films yielding enhanced photovoltaic performance. Solar Energy Materials and Solar Cells, 2017, 170: 178. |
[31] | WAGEH S, Al-GHAMDI A A, ZHAO L. Insights into mechanism of CsPbBr3 nanocrystal interfacial modifier in perovskite solar cells. Acta Physico Chimica Sinica, 2022, 38(7):2111009. |
[32] | ZHANG S, DONG G, LIN B, et al. A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2015, 277: 52. |
[33] | ZHAO J, LI X, LIN J, et al. Unveiling the influence of absorber thickness on efficient Sb2(S, Se)3 solar cells through controlled chemical bath deposition. Surfaces and Interfaces, 2023, 42: 103411. |
[34] | LIU J, CAO M, FENG Z, et al. Thermal evaporation-deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S,Se)3solar cells. Journal of Alloys and Compounds, 2022, 920: 165885. |
[35] | GUO H, JIA X, LIU J, et al. Classification of lattice defects and the microscopic origin of p-type conductivity of Sb2Se3 solar cell absorber with varying Al2O3-layer thicknesses. Physica B: Condensed Matter, 2023, 648: 414394. |
[36] | ZHANG S, HU Z, ZHANG J, et al. Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability. Journal of Power Sources, 2019, 438: 226987. |
[1] | ZHANG Jinghui, LU Xiaotong, MAO Haiyan, TIAN Yazhou, ZHANG Shanlin. Effect of Sintering Additives on Sintering Behavior and Conductivity of BaZr0.1Ce0.7Y0.2O3-δ Electrolytes [J]. Journal of Inorganic Materials, 2025, 40(1): 84-90. |
[2] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[3] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[4] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[5] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[6] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[7] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[8] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[9] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. |
[10] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[11] | LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403. |
[12] | WANG Yu, XIONG Hao, HUANG Xiaokun, JIANG Linqin, WU Bo, LI Jiansheng, YANG Aijun. Regulation of Low-dose Stannous Iso-octanoate for Two-step Prepared Sn-Pb Alloyed Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1339-1347. |
[13] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[14] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[15] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||