Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (3): 313-320.DOI: 10.15541/jim20230438
Special Issue: 【生物材料】骨骼与齿类组织修复(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Chengyu(), DING Ziyou, HAN Yingchao(
)
Received:
2023-09-24
Revised:
2023-10-15
Published:
2024-03-20
Online:
2023-11-22
Contact:
HAN Yingchao, professor. E-mail: hanyingchao@whut.edu.cnAbout author:
LI Chengyu(1995-), male, PhD candidate. E-mail: lcy9524@foxmail.com
Supported by:
CLC Number:
LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite[J]. Journal of Inorganic Materials, 2024, 39(3): 313-320.
Fig. 1 Morphologies and structures of MnHAP (a) XRD patterns of MnHAP and HAP; (b-f) SEM images of HAP (b), MnHAP1 (c), MnHAP5 (d), MnHAP10 (e), and MnHAP20 (f); (g-k) TEM images of HAP (g), MnHAP1 (h), MnHAP5 (i), MnHAP10 (j) and MnHAP20 (k); (l-p) Selected area diffraction pattern of HAP (l), MnHAP1 (m), MnHAP5 (n), MnHAP10 (o), and MnHAP20 (p)
Sample | a-axis/Å | c-axis/Å | Volume/Å3 | Crytallinity/% |
---|---|---|---|---|
HAP | 9.41129 | 6.88743 | 528.31 | 61.77 |
MnHAP1 | 9.41083 | 6.88255 | 528.78 | 62.92 |
MnHAP5 | 9.40699 | 6.88027 | 527.74 | 61.72 |
MnHAP10 | 9.40415 | 6.87068 | 527.4 | 55.98 |
MnHAP20 | 9.40065 | 6.86074 | 527.11 | 50.36 |
Table 1 Lattice parameters, volume, and crystallinity of MnHAP and HAP
Sample | a-axis/Å | c-axis/Å | Volume/Å3 | Crytallinity/% |
---|---|---|---|---|
HAP | 9.41129 | 6.88743 | 528.31 | 61.77 |
MnHAP1 | 9.41083 | 6.88255 | 528.78 | 62.92 |
MnHAP5 | 9.40699 | 6.88027 | 527.74 | 61.72 |
MnHAP10 | 9.40415 | 6.87068 | 527.4 | 55.98 |
MnHAP20 | 9.40065 | 6.86074 | 527.11 | 50.36 |
Fig. 3 Mn element valence in MnHAP10 (a), photoabsorption of MnHAP (b), photothermal conversion efficiency of MnHAP10 (c), pure antibacterial effect MnHAP (d-e) and photothermal antibacterial MnHAP10 (f)
[1] |
WAN Y, FANG J, WANG Y, et al. Antibacterial zeolite imidazole frameworks with manganese doping for immunomodulation to accelerate infected wound healing. Advanced Healthcare Materials, 2021, 10(22): 2101515.
DOI URL |
[2] |
SIMON A T, DUTTA D, CHATTOPADHYAY A, et al. Copper nanocluster-doped luminescent hydroxyapatite nanoparticles for antibacterial and antibiofilm applications. ACS Omega, 2019, 4(3): 4697.
DOI PMID |
[3] |
LV Y, CHEN Y, ZHENG Y, et al. Evaluation of the antibacterial properties and in-vitro cell compatibilities of doped copper oxide/hydroxyapatite composites. Colloids Surface B Biointerfaces, 2022, 209(2): 112194.
DOI URL |
[4] |
CHLALA D, GIRAUDON J M, LABAKI M, et al. Formaldehyde total oxidation on manganese-doped hydroxyapatite: the effect of Mn content. Catalysts, 2020, 10(12): 1422.
DOI URL |
[5] |
ROSTICHER C, VIANA B, MALDINEY T, et al. Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging. Journal of Luminescence, 2016, 170: 460.
DOI URL |
[6] |
KANDORI K, MURATA R, YAMAGUCHI Y, et al. Protein adsorption behaviors onto Mn(II)-doped calcium hydroxyapatite particles with different morphologies. Colloids Surface B Biointerfaces, 2018, 167: 36.
DOI URL |
[7] |
JIN J, YANG L, CHEN F, et al. Drug delivery system based on nanobubbles. Interdisciplinary Materials, 2022, 1(4): 471.
DOI URL |
[8] | TURK S, ALTINSOY I, EFE G C, et al. Biomimetic synthesis of Ag, Zn or Co doped HA and coating of Ag, Zn or Co doped HA/fMWCNT composite on functionalized Ti. Materials Science & Engineering C-Materials for Biological Application, 2019, 99: 986. |
[9] |
IBRAHIM M, LABAKI M, NUNS N, et al. Cu-Mn hydroxyapatite materials for toluene total oxidation. ChemCatChem, 2019, 12(2): 550.
DOI URL |
[10] |
VAN H N, HOAN B T, NGUYEN K T, et al. Controlling blue and red light emissions from europium (Eu2+)/manganese (Mn2+)- codoped beta-tricalcium phosphate [β-Ca3(PO4)2 (TCP)] phosphors. Journal of Electronic Materials, 2018, 47(5): 2964.
DOI |
[11] |
ATES T, DOROZHKIN S V, KAYGILI O, et al. The effects of Mn and/or Ni dopants on the in vitro/in vivo performance, structural and magnetic properties of β-tricalcium phosphate bioceramics. Ceramics International, 2019, 45(17): 22752.
DOI URL |
[12] |
WANG M, LI M, WANG Y, et al. Efficient antibacterial activity of hydroxyapatite through ROS generation motivated by trace Mn(Ⅲ) coupled H vacancies. Journal of Materials Chemistry B, 2021, 9(15): 3401.
DOI URL |
[13] |
BHATTACHARJEE A, HASSAN R, GUPTA A, et al. Effect of Zn and Co doping on antibacterial efficacy and cytocompatibility of spark plasma sintered hydroxyapatite. Journal of the American Ceramic Society, 2020, 103(8): 4090.
DOI URL |
[14] | MUTHUSAMY S, MAHENDIRAN B, SAMPATH S, et al. Hydroxyapatite nanophases augmented with selenium and manganese ions for bone regeneration: physiochemical, microstructural and biological characterization. Materials Science & Engineering C-Materials for Biological Application, 2021, 126: 112149. |
[15] |
RAVICHANDRAN K, SATHISH P, MURALIDHARAN B, et al. Influence of a novel triple doping (Ag+Mn+F) on the magnetic and antibacterial properties of ZnO nanopowders. Ceramics International, 2016, 42(2): 2349.
DOI URL |
[16] |
LALA S, GHOSH M, DAS P K, et al. Mechanical preparation of nanocrystalline biocompatible single-phase Mn-doped A-type carbonated hydroxyapatite (A-cHAp): effect of Mn doping on microstructure. Dalton Transactions, 2015, 44(46): 20087.
DOI URL |
[17] | LIN Z, CAO Y, ZOU J, et al. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. Materials Science & Engineering C-Materials for Biological Application, 2020, 114: 111032. |
[18] |
BEHERA D R, NAYAK P, RAUTRAY T R. Phosphatidylethanolamine impregnated Zn-HA coated on titanium for enhanced bone growth with antibacterial properties. Journal of King Saud University - Science, 2020, 32(1): 848.
DOI URL |
[19] |
JACOBS A, RENAUDIN G, FORESTIER C, et al. Biological properties of copper-doped biomaterials for orthopedic applications: a review of antibacterial, angiogenic and osteogenic aspects. Acta Biomaterialia, 2020, 117: 21.
DOI PMID |
[20] |
LUO H, XIE J, XIONG L, et al. Engineering photoluminescent and magnetic lamellar hydroxyapatite by facile one-step Se/Gd dual-doping. Journal of Materials Chemistry B, 2018, 6(21): 3515.
DOI PMID |
[21] |
VAN H N, TAM P D, KIEN N D T, et al. Enhancing the luminescence of Eu3+/Eu2+ ion-doped hydroxyapatite by fluoridation and thermal annealing. Luminescence, 2017, 32(5): 817.
DOI URL |
[22] |
SINUSAITE L, POPOV A, RAUDONYTE-SVIRBUTAVICIENE E, et al. Effect of Mn doping on hydrolysis of low-temperature synthesized metastable alpha-tricalcium phosphate. Ceramics International, 2021, 47(9): 12078.
DOI URL |
[23] |
CHLALA D, GRIBOVAL-CONSTANT A, NUNS N, et al. Effect of Mn loading onto hydroxyapatite supported Mn catalysts for toluene removal: contribution of PCA assisted ToF-SIMS. Catalysis Today, 2018, 307: 41.
DOI URL |
[24] |
DUAN K, WENG J, YANG A, et al. Hydrothermal preparation and characterization of Zn, Si, Mg, Fe doped hydroxyapatite. Journal of Inorganic Materials, 2021, 36(10): 1091.
DOI URL |
[25] |
ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al. Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review. Journal of Materials Chemistry C, 2018, 6(11): 2652.
DOI URL |
[26] |
DING B, ZHENG P, MA P, et al. Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Advanced Materials, 2020, 32(10): 1905823.
DOI URL |
[27] |
CHEN Z, LI Z, LI C, et al. Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer. Drug Delivery, 2022, 29(1): 1201.
DOI PMID |
[28] |
HE T, JIANG C, HE J, et al. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex- imaging-guided NIR-II photothermal-chemodynamic therapy. Advanced Materials, 2021, 33(13): 2008540.
DOI URL |
[29] |
TORRES P M, VIEIRA S I, CERQUEIRA A R, et al. Effects of Mn- doping on the structure and biological properties of beta-tricalcium phosphate. Journal of Inorganic Biochemistry, 2014, 136: 57.
DOI URL |
[30] |
TAO Q, HE G, YE S, et al. Mn doped Prussian blue nanoparticles for T1/T2 MR imaging, PA imaging and Fenton reaction enhanced mild temperature photothermal therapy of tumor. Journal of Nanobiotechnology, 2022, 20(1): 18.
DOI |
[31] | SPRIO S, PRETI L, MONTESI M, et al. Surface phenomena enhancing the antibacterial and osteogenic ability of nanocrystalline hydroxyapatite, activated by multiple-ion doping. ACS Biomaterials Science & Engineering, 2019, 5(11): 5947. |
[32] |
YANG C, REN Q, LIU X, et al. Porous agarose/Gd-hydroxyapatite composite bone fillers with promoted osteogenesis and antibacterial activity. Ceramics International, 2022, 48(7): 9413.
DOI URL |
[1] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. |
[2] | ZHANG Zhimin, GE Min, LIN Han, SHI Jianlin. Novel Magnetoelectric Catalytic Nanoparticles: RNS Release and Antibacterial Efficiency [J]. Journal of Inorganic Materials, 2024, 39(10): 1114-1124. |
[3] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
[4] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[5] | MENG Bo, XIAO Gang, WANG Xiuli, TU Jiangping, GU Changdong. Ionic Thermal Synthesis and Reversible Heat Storage Performance of Manganese-based Oxides [J]. Journal of Inorganic Materials, 2023, 38(7): 793-799. |
[6] | WU Rui, ZHANG Minhui, JIN Chenyun, LIN Jian, WANG Deping. Photothermal Core-Shell TiN@Borosilicate Bioglass Nanoparticles: Degradation and Mineralization [J]. Journal of Inorganic Materials, 2023, 38(6): 708-716. |
[7] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[8] | DU Jiaheng, FAN Xinli, XIAO Dongqin, YIN Yiran, LI Zhong, HE Kui, DUAN Ke. Electrophoretic Coating of Magnesium Oxide on Microarc-oxidized Titanium and Its Biological Properties [J]. Journal of Inorganic Materials, 2023, 38(12): 1441-1448. |
[9] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[10] | LIU Yan, ZHANG Yufan, WANG Ximan, LI Ting, MA Wenting, YANG Fuwei, CHEN Liang, ZHAO Dongyue, YAN Xiaoqin. Consolidation of Fragile Weathered Bone Relics Using Hydroxyapatite Material as Consolidant [J]. Journal of Inorganic Materials, 2023, 38(11): 1345-1354. |
[11] | WU Xuetong, ZHANG Ruofei, YAN Xiyun, FAN Kelong. Nanozyme: a New Approach for Anti-microbial Infections [J]. Journal of Inorganic Materials, 2023, 38(1): 43-54. |
[12] | SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial [J]. Journal of Inorganic Materials, 2022, 37(9): 983-990. |
[13] | SHI Jixiang, ZHAI Dong, ZHU Min, ZHU Yufang. Preparation and Characterization of Bioactive Glass-Manganese Dioxide Composite Scaffolds [J]. Journal of Inorganic Materials, 2022, 37(4): 427-435. |
[14] | CHI Zheren, ZHANG Liao, GUO Zhiqian, LI Yongsheng, NIU Dechao. Flav7-loaded Silica-based Hybrid Micelles: Synthesis and Photothermal Performance [J]. Journal of Inorganic Materials, 2022, 37(11): 1236-1244. |
[15] | CHEN Yaling, SHU Song, WANG Shaoxin, LI Jianjun. Mn-HAP SCR Catalyst: Preparation and Sulfur Resistance [J]. Journal of Inorganic Materials, 2022, 37(10): 1065-1072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||