Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (3): 306-312.DOI: 10.15541/jim20230316
Special Issue: 【能源环境】热电材料(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													CHEN Hao1(
), FAN Wenhao2, AN Decheng3, CHEN Shaoping1(
)
												  
						
						
						
					
				
Received:2023-07-13
															
							
																	Revised:2023-09-14
															
							
															
							
																	Published:2024-03-20
															
							
																	Online:2023-10-07
															
						Contact:
								CHEN Shaoping, professor. E-mail: chenshaoping@tyut.edu.cnAbout author:CHEN Hao (1995-), male, Master candidate. E-mail: chenha024@163.com				
													Supported by:CLC Number:
CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation[J]. Journal of Inorganic Materials, 2024, 39(3): 306-312.
																													Fig. 4 Temperature dependent thermoelectric properties of SnTe-x%MgSe (0≤x≤6) (a) Power factor; (b) Thermal conductivity and lattice thermal conductivity; (c) Thermoelectric figure of merit (ZT)
																													Fig. 5 (a) XRD patterns and (b) lattice parameter for Sn1-yPbyTe-4%MgSe (0.01≤y≤0.05) samples, and (c) EDS mappings for the sample Sn0.95Pb0.05Te-4%MgSe
																													Fig. 6 Thermoelectric properties of Sn1-yPbyTe-4%MgSe samples (0.01≤y≤0.05) (a) Houle carrier concentration and mobility; (b) Electrical conductivity; (c) Seebeck coefficient; (d) Power factor; (e) Average power factor; (f) Electronic thermal conductivity; (g) Total thermal conductivity; (h) Average ZT
| Sn1-yPbyTe-x%MgSe | S/(μV·K-1) | σ/(×103, S·cm-1) | PF/(μW·cm-1·K-2) | nH/(×1020, cm-3) | κtot/(W·m-1·K-1) | ZT | 
|---|---|---|---|---|---|---|
| x=0, y=0 | 24 | 7.28 | 4.2 | 4.3 | 8.62 | 0.015 | 
| x=2, y=0 | 15 | 6.75 | 1.52 | 4.21 | 8.06 | 0.006 | 
| x=4, y=0 | 17 | 6.2 | 1.79 | 4.31 | 7.68 | 0.007 | 
| x=6, y=0 | 18 | 6.03 | 1.95 | 4.02 | 7.67 | 0.008 | 
| x=4, y=0.01 | 18 | 6.87 | 2.23 | 3.84 | 3.74 | 0.018 | 
| x=4, y=0.02 | 23 | 5.89 | 3.12 | 3.56 | 3.44 | 0.027 | 
| x=4, y=0.03 | 30 | 5.4 | 4.86 | 3.42 | 3.36 | 0.043 | 
| x=4, y=0.04 | 32 | 5.2 | 5.32 | 3.2 | 3.27 | 0.049 | 
| x=4, y=0.05 | 39 | 4.45 | 6.77 | 2.8 | 3.25 | 0.062 | 
Table 1 Thermoelectric properties of Sn1-yPbyTe-x%MgSe (0.01≤y≤0.05, 0≤x≤6) at room temperature in this study
| Sn1-yPbyTe-x%MgSe | S/(μV·K-1) | σ/(×103, S·cm-1) | PF/(μW·cm-1·K-2) | nH/(×1020, cm-3) | κtot/(W·m-1·K-1) | ZT | 
|---|---|---|---|---|---|---|
| x=0, y=0 | 24 | 7.28 | 4.2 | 4.3 | 8.62 | 0.015 | 
| x=2, y=0 | 15 | 6.75 | 1.52 | 4.21 | 8.06 | 0.006 | 
| x=4, y=0 | 17 | 6.2 | 1.79 | 4.31 | 7.68 | 0.007 | 
| x=6, y=0 | 18 | 6.03 | 1.95 | 4.02 | 7.67 | 0.008 | 
| x=4, y=0.01 | 18 | 6.87 | 2.23 | 3.84 | 3.74 | 0.018 | 
| x=4, y=0.02 | 23 | 5.89 | 3.12 | 3.56 | 3.44 | 0.027 | 
| x=4, y=0.03 | 30 | 5.4 | 4.86 | 3.42 | 3.36 | 0.043 | 
| x=4, y=0.04 | 32 | 5.2 | 5.32 | 3.2 | 3.27 | 0.049 | 
| x=4, y=0.05 | 39 | 4.45 | 6.77 | 2.8 | 3.25 | 0.062 | 
																													Fig. 7 Thermoelectric property comparison of Sn0.96Pb0.04Te- 4%MgSe in this work with corresponding materials in literature[3,10,12,17,26,32,35⇓⇓⇓ -39]
| [1] |  
											 SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008,  7(2): 105. 
																							 DOI PMID  | 
										
| [2] | 陈立东, 王群, 李小亚. 环境友好型能源技术—热电转换技术. 中国科技成果, 2005, (13): 34. | 
| [3] | AN D, WANG J, ZHANG J, et al. Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to high-performance SnTe thermoelectrics. Energy & Environmental Science, 2021, 14(10): 5469. | 
| [4] |  
											 LIU W, JIE Q, KIM H S, et al. Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Materialia, 2015,  87: 357. 
																							 DOI URL  | 
										
| [5] |  
											 YOON J S, SONG J M, RAHMAN J U, et al. High thermoelectric performance of melt-spun CuxBi0.5Sb1.5Te3 by synergetic effect of carrier tuning and phonon engineering. Acta Materialia, 2018,  158: 289. 
																							 DOI URL  | 
										
| [6] |  
											 LU W, HE T, LI S, et al. Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared via a green and facile hydrothermal method. Nanoscale, 2020,  12(10): 5857. 
																							 DOI URL  | 
										
| [7] |  
											 PEI Y, WANG H, SNYDER G J. Band engineering of thermoelectric materials. Advanced Materials, 2012,  24(46): 6125. 
																							 DOI URL  | 
										
| [8] |  
											 SUN P, KUMAR K R, LYU M, et al. Generic Seebeck effect from spin entropy. The Innovation, 2021,  2(2): 100101. 
																							 DOI URL  | 
										
| [9] |  
											 ZOU T, QIN X, ZHANG Y, et al. Enhanced thermoelectric performance of beta-Zn4Sb3 based nanocomposites through combined effects of density of states resonance and carrier energy filtering. Scientific Reports, 2015,  5: 17803. 
																							 DOI  | 
										
| [10] |  
											 XIE G, LI Z, LUO T, et al. Band inversion induced multiple electronic valleys for high thermoelectric performance of SnTe with strong lattice softening. Nano Energy, 2020,  69: 104395. 
																							 DOI URL  | 
										
| [11] |  
											 CHEN L, SHI X, QIU P, et al. Application of entropy engineering in thermoelectrics. Journal of Inorganic Materials, 2021,  36(4): 347. 
																							 DOI  | 
										
| [12] |  
											 ZHANG Q, GUO Z, WANG R, et al. High-performance thermoelectric material and module driven by medium-entropy engineering in SnTe. Advanced Functional Materials, 2022,  32(35): 2205458. 
																							 DOI URL  | 
										
| [13] |  
											 TAN G, SHI F, SUN H, et al. SnTe-AgBiTe2 as an efficient thermoelectric material with low thermal conductivity. Journal of Materials Chemistry A, 2014,  2(48): 20849. 
																							 DOI URL  | 
										
| [14] | HE W, LI N, WANG H, et al. Multiple effects promoting the thermoelectric performance of SnTe by alloying with CuSbTe2 and CuBiTe2. ACS Applied Materials & Interfaces, 2021, 13(44): 52775. | 
| [15] |  
											 TAN G, SHI F, HAO S, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. Journal of the American Chemical Society, 2015,  137(35): 11507. 
																							 DOI PMID  | 
										
| [16] |  
											 WU G, GUO Z, ZHANG Q, et al. Refined band structure plus enhanced phonon scattering realizes thermoelectric performance optimization in CuI-Mn codoped SnTe. Journal of Materials Chemistry A, 2021,  9(22): 13065. 
																							 DOI URL  | 
										
| [17] |  
											 BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties. Chemistry of Materials, 2015,  27(2): 581. 
																							 DOI URL  | 
										
| [18] |  
											 TAN G, ZHAO L D, SHI F, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. Journal of the American Chemical Society, 2014,  136(19): 7006. 
																							 DOI URL  | 
										
| [19] |  
											 AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys. Chemistry of Materials, 2015,  28(1): 376. 
																							 DOI URL  | 
										
| [20] |  
											 TAN X F, DUAN S C, WANG H X, et al. Multi-doping in SnTe: improvement of thermoelectric performance due to lower thermal conductivity and enhanced power factor. Journal of Inorganic Materials, 2019,  34(3): 335. 
																							 DOI URL  | 
										
| [21] |  
											 TAN G, ZEIER W G, SHI F, et al. High thermoelectric performance SnTe-In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering. Chemistry of Materials, 2015,  27(22): 7801. 
																							 DOI URL  | 
										
| [22] |  
											 ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band. Physical Chemistry Chemical Physics, 2014,  16(38): 20741. 
																							 DOI PMID  | 
										
| [23] | BANIK A, VISHAL B, PERUMAL S, et al. The origin of low thermal conductivity in Sn1-xSbxTe: phonon scattering via layered intergrowth nanostructures. Energy & Environmental Science, 2016, 9(6): 2011. | 
| [24] |  
											 SHENOY U S, BHAT D K. Bi and Zn co-doped SnTe thermoelectrics: interplay of resonance levels and heavy hole band dominance leading to enhanced performance and a record high room temperature ZT. Journal of Materials Chemistry C, 2020,  8(6): 2036. 
																							 DOI URL  | 
										
| [25] |  
											 ALLAOUI I, BENYOUSSEF A, EL KENZ A. Two-dimensional SnTe/Sb van der Waals heterostructure for photovoltaic application. Solid State Sciences, 2021,  121: 106736. 
																							 DOI URL  | 
										
| [26] |  
											 WANG D, ZHANG X, YU Y, et al. Enhancing thermoelectric performance of SnTe via stepwisely optimizing electrical and thermal transport properties. Journal of Alloys and Compounds, 2019,  773: 571. 
																							 DOI URL  | 
										
| [27] |  
											 GUO C, WANG D, ZHANG X, et al. One-one correspondence between n-type SnTe thermoelectric and topological phase transition. Chemistry of Materials, 2022,  34(7): 3423. 
																							 DOI URL  | 
										
| [28] |  
											 TANG J, GAO B, LIN S, et al. Manipulation of band structure and interstitial defects for improving thermoelectric SnTe. Advanced Functional Materials, 2018,  28(34): 1803586. 
																							 DOI URL  | 
										
| [29] |  
											 KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Computational Materials Science, 1996,  6(1): 15. 
																							 DOI URL  | 
										
| [30] |  
											 PERDEW J P, BURKE K, E M. Generalized gradient approximation made simple. Physical Review Letters, 1996,  77(18): 3865. 
																							 DOI PMID  | 
										
| [31] |  
											 BLÖCHL P E. Projector augmented-wave method. Physical Review B, 1994,  50(24): 17953. 
																							 DOI PMID  | 
										
| [32] |  
											 TANG J, YAO Z, CHEN Z, et al. Maximization of transporting bands for high-performance SnTe alloy thermoelectrics. Materials Today Physics, 2019,  9: 100091. 
																							 DOI URL  | 
										
| [33] |  
											 LITTLEWOOD P B, MIHAILA B, SCHULZE R K, et al. Band structure of SnTe studied by photoemission spectroscopy. Physical Review Letters, 2010,  105(8): 086404. 
																							 DOI URL  | 
										
| [34] |  
											 MUTHAIAH R, GARG J. Thermal conductivity of magnesium selenide (MgSe)-a first principles study. Computational Materials Science, 2021,  198: 110679. 
																							 DOI URL  | 
										
| [35] |  
											 ROYCHOWDHURY S, SHENOY U S, WAGHMARE U V, et al. An enhanced seebeck coefficient and high thermoelectric performance in p-type In and Mg co-doped Sn1-xPbxTe via the co-adjuvant effect of the resonance level and heavy hole valence band. Journal of Materials Chemistry C, 2017,  5(23): 5737. 
																							 DOI URL  | 
										
| [36] |  
											 BANIK A, BISWAS K. Lead-free thermoelectrics: promising thermoelectric performance in p-type SnTe1-xSex system. Journal of Materials Chemistry A, 2014,  2(25): 9620. 
																							 DOI URL  | 
										
| [37] |  
											 FU T, XIN J, ZHU T, et al. Approaching the minimum lattice thermal conductivity of p-type SnTe thermoelectric materials by Sb and Mg alloying. Science Bulletin, 2019,  64(14): 1024. 
																							 DOI PMID  | 
										
| [38] | LIU X, ZHANG B, CHEN Y, et al. Achieving enhanced thermoelectric performance in (SnTe)1-x(Sb2Te3)x and (SnTe)1-y (Sb2Se3)y synthesized via solvothermal reaction and sintering. ACS Applied Materials & Interfaces, 2020, 12(40): 44805. | 
| [39] |  
											 BHAT D K, SHENOY U S. SnTe thermoelectrics: dual step approach for enhanced performance. Journal of Alloys and Compounds, 2020,  834: 155181. 
																							 DOI URL  | 
										
| [1] | CHEN Zi, ZHANG Aidi, GONG Ke, LIU Haihua, YU Gang, SHAN Qingsong, LIU Yong, ZENG Haibo. High-brightness and Monodisperse Quaternary CuInZnS@ZnS Quantum Dots with Tunable and Long-lived Emission [J]. Journal of Inorganic Materials, 2025, 40(4): 433-339. | 
| [2] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. | 
| [3] | TIAN Zhen, JIANG Quanwei, LI Jianbo, YU Lifeng, KANG Huijun, WANG Tongmin. Simultaneous Optimization of Electrical and Thermal Transport Properties of BiSbSe1.50Te1.50 Thermoelectrics by Hot Deformation [J]. Journal of Inorganic Materials, 2024, 39(12): 1316-1324. | 
| [4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. | 
| [5] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. | 
| [6] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. | 
| [7] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. | 
| [8] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. | 
| [9] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. | 
| [10] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. | 
| [11] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. | 
| [12] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. | 
| [13] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. | 
| [14] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. | 
| [15] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||