Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (1): 81-89.DOI: 10.15541/jim20230229
Special Issue: 【能源环境】化工催化(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Yanli(), QIAN Xinyi, SHEN Chunyin, ZHAN Liang
Received:
2023-05-11
Revised:
2023-08-02
Published:
2024-01-20
Online:
2023-10-15
About author:
WANG Yanli (1975-), female, PhD, associate professor. E-mail: ylwang@ecust.edu.cn
Supported by:
CLC Number:
WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO[J]. Journal of Inorganic Materials, 2024, 39(1): 81-89.
Fig. 5 (a) Nitrogen adsorption/desorption isotherms and (b) corresponding pore size distribution curves of G@MnOx-CeO2 catalysts with different metal loadings
Sample | SBET/ (m2·g-1) | Vtotal/ (cm3·g-1) | Average pore size/nm |
---|---|---|---|
G@Ce(0.9) | 65.0 | 0.125 | 7.67 |
G@Mn(0.18)Ce(0.45) | 241.2 | 0.230 | 3.81 |
G@Mn(0.35)Ce(0.9) | 197.5 | 0.287 | 5.82 |
G@Mn(1)Ce(2.7) | 126.6 | 0.199 | 6.29 |
Table 1 Pore parameters of various catalysts
Sample | SBET/ (m2·g-1) | Vtotal/ (cm3·g-1) | Average pore size/nm |
---|---|---|---|
G@Ce(0.9) | 65.0 | 0.125 | 7.67 |
G@Mn(0.18)Ce(0.45) | 241.2 | 0.230 | 3.81 |
G@Mn(0.35)Ce(0.9) | 197.5 | 0.287 | 5.82 |
G@Mn(1)Ce(2.7) | 126.6 | 0.199 | 6.29 |
Sample | Surface atomic concentration/% | Relative atomic ratio/% | ||||
---|---|---|---|---|---|---|
C | O | Mn | Ce | Oβ/O | (Mn3++Mn4+)/Mn | |
G@Mn(0.35)Ce(0.9) | 18.10 | 65.72 | 8.26 | 7.92 | 45.2 | 80.1 |
Table 2 Surface atomic concentrations of G@Mn(0.35)Ce(0.9) catalyst
Sample | Surface atomic concentration/% | Relative atomic ratio/% | ||||
---|---|---|---|---|---|---|
C | O | Mn | Ce | Oβ/O | (Mn3++Mn4+)/Mn | |
G@Mn(0.35)Ce(0.9) | 18.10 | 65.72 | 8.26 | 7.92 | 45.2 | 80.1 |
[1] |
QI G, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B: Environmental, 2003, 44(3):217.
DOI URL |
[2] |
KOMPIO P G, BRUCKNER A, HIPLER F, et al. A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 2012, 286(1):237.
DOI URL |
[3] |
LEE I Y, KIM D W, LEE J B, et al. A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3. Chemical Engineering Journal, 2002, 90(3):267.
DOI URL |
[4] |
KANG M, PARK E D, KIM J M, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Applied Catalysis A: General, 2007, 327(2):261.
DOI URL |
[5] |
QI G, YANG R T. Performance and kinetics study for low- temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. Journal of Catalysis, 2003, 217(2):434.
DOI URL |
[6] |
WU Z B, JIN R B, LIU Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catalysis Communications, 2008, 9(13): 2217.
DOI URL |
[7] | LIU Z M, YANG Y, ZHANG S X, et al. Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures. Catalysis Today, 2013, 216: 76. |
[8] | LI Yi, LI Y P, WANG P F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods. Chemical Engineering Journal, 2017, 330: 213. |
[9] | DENG S S, LI Y H, A R T, et al. Low-temperature selective catalytic reduction of NO with NH3 over manganese and tin oxides supported on titania. Chemical Industry and Engineering Progress, 2013, 32(10):2403. |
[10] | CHANG H Z, LI J H, CHEN X Y, et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2. Catalysis Communications, 2012, 27: 54. |
[11] | YAO X J, CHEN L, CAO J, et al. Enhancing the deNOx performance of MnOx/CeO2-ZrO2 nanorod catalyst for low- temperature NH3-SCR by TiO2 modification. Chemical Engineering Journal, 2019, 369: 46. |
[12] |
TANG X L, WANG C Z, GAO F Y, et al. Effect of hierarchical element doping on the low-temperature activity of manganese- based catalysts for NH3-SCR. Journal of Environmental Chemical Engineering, 2020, 8(5):104399.
DOI URL |
[13] |
WANG Y L, LI X X, ZHAN L, et al. Effect of SO2 on activated carbon honeycomb supported CeO2-MnOx catalyst for NO removal at low temperature. Industrial & Engineering Chemistry Research, 2015, 54(8):2274.
DOI URL |
[14] |
SHEN B X, LIU T. Deactivation of MnOx-CeOx/ACF catalysts for low-temperature NH3-SCR in the presence of SO2. Acta Physico-Chimica Sinica, 2010, 26(11):3009.
DOI URL |
[15] |
ZHANG D S, ZHANG L, SHI L Y, et al. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale, 2013, 5(3):1127.
DOI URL |
[16] |
JIAO J Z, LI S H, HUANG B C. Preparation of manganese oxides supported on graphene catalysts and their activity in low-temperature NH3-SCR. Acta Physico-Chimica Sinica, 2015, 31(7):1383.
DOI URL |
[17] | XU H M, QU Z, ZONG C X, et al. MnOx/graphene for the catalytic oxidation and adsorption of elemental mercury. Environmental Science and Technology, 2015, 49(11): 6823. |
[18] |
LU X N, SONG C Y, JIA S H, et al. Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2-graphene. Chemical Engineering Journal, 2015, 260(12):776.
DOI URL |
[19] | XIAO X, SHENG Z Y, YANG L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method. Catalysis Science & Technology, 2016, 6(5):1507. |
[20] | YAO W Q, WU S B, ZHAN L, et al. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chemical Engineering Journal, 2019, 361: 329. |
[21] |
YANG S B, ZHAN L, XU X Y, et al. Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture. Advanced Materials, 2013, 25(15): 2130.
DOI URL |
[22] |
YAO W Q, CUI Y S, ZHAN L, et al. Two-dimensional sandwich-like Ag coated silicon-graphene-silicon nanostructures for superior lithium storage. Applied Surface Science, 2017, 425(1):614.
DOI URL |
[23] | LV L, SHEN Y Q. Selective catalytic reduction with NH3 at low temperature. Journal of Combustion Science and Technology, 2011, 17(2):103. |
[24] | LIU Chang, GAO G, SHI J W, et al. MnOx-CeO2 shell-in-shell microspheres for NH3-SCR de-NOx at low temperature. Catalysis Communications, 2016, 86: 36. |
[25] | KONG Z K, LI Y, WANG Y L, et al. Monodispersed MnOx-CeO2 solid solution as superior electrocatalyst for Li2S precipitation and conversion. Chemical Engineering Journal, 2020, 392: 123697. |
[26] |
DENG D Y, CHEN N, XIAO X C, et al. Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics, 2017, 23(1):121.
DOI URL |
[27] | YAO W Y, LIU Y, WU Z B. The promoting effect of CeO2@Ce-O-P multi-core@shell structure on SO2 tolerance for selective catalytic reduction of NO with NH3 at low temperature. Applied Surface Science, 2018, 442: 156. |
[28] |
MACHIDA M, UTO M, KUROGI D, et al. Solid-gas interaction of nitrogen oxide adsorbed on MnOx-CeO2: a DRIFTS study. Journal of Materials Chemistry, 2001, 11(3):900.
DOI URL |
[29] | ZHANG X M, DENG Y Q, TIAN P, et al. Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnOx-CeO2 catalysts. Applied Catalysis B: Environmental, 2016, 191: 179. |
[30] | YOU X C, SHENG Z Y, YU D Q, et al. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature. Applied Surface Science, 2017, 423: 845. |
[31] | WU Y Z, LIU S Q, WANG H Y, et al. A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochimica Acta, 2013, 90: 210. |
[32] |
WANG Y L, KANG Y, GE M, et al. Cerium and tin oxides anchored onto reduced graphene oxide for selective catalytic reduction of NO with NH3 at low temperatures. RSC Advances, 2018, 8(63):36383.
DOI URL |
[33] |
LU X N, SONG C Y, CHANG C C, et al. Manganese oxides supported on TiO2-graphene nanocomposite catalysts for selective catalytic reduction of NOx with NH3 at low temperature. Industrial & Engineering Chemistry Research, 2014, 53(29):11601.
DOI URL |
[34] | WANG X, ZHENG Y Y, XU Z, et al. Low-temperature NO reduction with NH3 over Mn-CeOx/CNT catalysts prepared by a liquid-phase method. Catalysis Science & Technology, 2014, 4(6):1738. |
[35] | FAN Z Y, SHI J W, GAO C, et al. Rationally designed porous MnOx-FeOx nanoneedles for low-temperature selective catalytic reduction of NOx by NH3. ACS Applied Materials & Interfaces, 2017, 9(19):16117. |
[36] |
SUN M T, HUANG B C, MA J W, et al. Morphological effects of manganese dioxide on catalytic reactions for low-temperature NH3-SCR. Acta Physico-Chimica Sinica, 2016, 32(6):1501.
DOI URL |
[1] | WEI Jianwen, ZHANG Lijuan, GENG Linlin, LI Yu, LIAO Lei, WANG Dunqiu. Novel CO2 Adsorbent Prepared with ZSM-5/MCM-48 as Support: High Adsorption Property and Its Mechanism [J]. Journal of Inorganic Materials, 2025, 40(7): 833-839. |
[2] | TANG Xinli, DING Ziyou, CHEN Junrui, ZHAO Gang, HAN Yingchao. In vivo Distribution and Metabolism of Calcium Phosphate Nanomaterials Based on Fluorescent Labeling with Rare Earth Europium Ions [J]. Journal of Inorganic Materials, 2025, 40(7): 754-764. |
[3] | ZHOU Houlin, SONG Zhiqing, TIAN Guo, GAO Xingsen. Effects of Growth Conditions on the Formation of Self-assembly Grown Topological Domain in BiFeO3 Nanoislands [J]. Journal of Inorganic Materials, 2025, 40(6): 667-674. |
[4] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[5] | YANG Mingkai, HUANG Zeai, ZHOU Yunxiao, LIU Tong, ZHANG Kuikui, TAN Hao, LIU Mengying, ZHAN Junjie, CHEN Guoxing, ZHOU Ying. Co-production of Few-layer Graphene and Hydrogen from Methane Pyrolysis Based on Cu and Metal Oxide-KCl Molten Medium [J]. Journal of Inorganic Materials, 2025, 40(5): 473-480. |
[6] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[7] | CHEN Xi, YUAN Yuan, TAN Yeqiang, LIU Changsheng. Strategic Study on the Development of Inorganic Non-metallic Biomaterials [J]. Journal of Inorganic Materials, 2025, 40(5): 449-456. |
[8] | LI Jianjun, CHEN Fangming, ZHANG Lili, WANG Lei, ZHANG Liting, CHEN Huiwen, XUE Changguo, XU Liangji. Peroxymonosulfate Activation by CoFe2O4/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic [J]. Journal of Inorganic Materials, 2025, 40(4): 440-448. |
[9] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[10] | JIA Xianghua, ZHANG Huixia, LIU Yanfeng, ZUO Guihong. Cu2O/Cu Hollow Spherical Heterojunction Photocatalysts Prepared by Wet Chemical Approach [J]. Journal of Inorganic Materials, 2025, 40(4): 397-404. |
[11] | XIN Zhenyu, GUO Ruihua, WUREN Tuoya, WANG Yan, AN Shengli, ZHANG Guofang, GUAN Lili. Pt-Fe/GO Nanocatalysts: Preparation and Electrocatalytic Performance on Ethanol Oxidation [J]. Journal of Inorganic Materials, 2025, 40(4): 379-387. |
[12] | YUAN Liping, WU Yuanbo, YU Jiajing, ZHANG Shiyan, SUN Yi, HU Yunchu, FAN Youhua. CNFs Aerogel Composite with Phosphomolybdic Acid Intercalated Hydrotalcite: Preparation and Thermal Insulation Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 415-424. |
[13] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[14] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[15] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||