Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (4): 361-375.DOI: 10.15541/jim20210299
• REVIEW • Next Articles
BAI Zhiqiang1,2(), ZHAO Lu2, BAI Yunfeng2(
), FENG Feng1,2(
)
Received:
2020-05-10
Revised:
2021-06-27
Published:
2022-04-20
Online:
2021-11-08
Contact:
BAI Yunfeng, professor. E-mail: baiyunfeng1130@126.com;About author:
BAI Zhiqiang (1987-), male, PhD candidate. E-mail: baizq1987@126.com
Supported by:
CLC Number:
BAI Zhiqiang, ZHAO Lu, BAI Yunfeng, FENG Feng. Research Progress on MXenes: Preparation, Property and Application in Tumor Theranostics[J]. Journal of Inorganic Materials, 2022, 37(4): 361-375.
Fig. 1 MXenes schematic composition[14] The first row shows structures of mono-transition metal (M) MXenes; The second row shows double-M solid solutions (SS), both of which contain two M molecules in the M layer being marked in green; The third row shows ordered double-M Mxenes, with one metal filling the outer M layer, and the other metal occupying the center M layer being marked in red; The fourth row shows an ordered divacancy structure, marked in pink. The schematic does not show the surface terminal Colorful figures are available on website
Fig. 2 Schematic preparation methods for MXenes and products prepared by chemical vapor deposition (a) HF acid etching method[11]; (b) Molten salt method[19]; (c) Alkali assisted hydrothermal method[39]; (d) Optical images of ultra-thin α-Mo2C crystal ((d1): irregular shape, (d2): hexagonal shape)[41]
Preparation method | Advantages | Disadvantages | Ref. |
---|---|---|---|
HF acid etching | Simple | Using highly corrosive and harmful HF | [ |
Fluoride salt | Milder reaction conditions; Safer than that of HF acid etching | Difficult to prepare nitride MXenes | [ |
Molten salt | Preparing nitride MXenes and preparing MXenes through non-MAX materials | Requiring inert protective gas, under high temperature condition | [ |
Alkali assisted hydrothermal | Preparing MXenes without fluorine functional groups | High concentration of NaOH, requiring inert protective gas, under high temperature condition | [ |
Chemical vapor deposition | Precise controlling element composition, size and surface groups | Difficult to prepare large-sized MXenes | [ |
Table 1 Summary of preparation methods of MXenes
Preparation method | Advantages | Disadvantages | Ref. |
---|---|---|---|
HF acid etching | Simple | Using highly corrosive and harmful HF | [ |
Fluoride salt | Milder reaction conditions; Safer than that of HF acid etching | Difficult to prepare nitride MXenes | [ |
Molten salt | Preparing nitride MXenes and preparing MXenes through non-MAX materials | Requiring inert protective gas, under high temperature condition | [ |
Alkali assisted hydrothermal | Preparing MXenes without fluorine functional groups | High concentration of NaOH, requiring inert protective gas, under high temperature condition | [ |
Chemical vapor deposition | Precise controlling element composition, size and surface groups | Difficult to prepare large-sized MXenes | [ |
Fig. 3 (a) Schematic diagrams of Ti3C2 nanoparticles on PTT in 4T1 tumor bearing nude mice[30] and (b) Nb2C nanosheets for PTT in vivo under NIR-I and NIR-II[28]
MXenes material | First report time | NIR range | Wavelength /nm | Extinction coefficient/(L·g-1·cm-1) | Photothermal conversion efficiency/% | NIR power /(W·cm-2) | Irradiation time /min | Temperature range/℃ | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ti3C2 | 2016/10 | NIR-I | 808 | 25.2 | - | 0.8 | 5 | 23.5-60.0 | |
Nb2C | 2017/10 | NIR-I | 808 | 37.6 | 36.5 | 1.5 | 5 | 25.0-60.0 | |
NIR-II | 1064 | 35.4 | 46.65 | 1.5 | 5 | 25.0-60.0 | |||
Ta4C3 | 2017/11 | NIR-I | 808 | 8.67 | 34.9 | 2.0 | 5 | 32.5-65.0 | [ |
Ti2C | 2019/01 | NIR-I | 808 | 7.39 | 87.1 | 2.0 | 2 | 25.5-93.8 | [ |
Mo2C | 2019/04 | NIR-I | 808 | 18.0 | 24.5 | 1.0 | 10 | 25.0-57.8 | [ |
NIR-II | 1064 | 12.3 | 43.3 | 1.0 | 10 | 25.0-62.3 | |||
V2C | 2020/01 | NIR-I | 808 | 38.3 | 48.5 | 0.48 | 10 | 24.0-57.9 | [ |
Ti2N | 2020/11 | NIR-I | 808 | 41.25 | 48.62 | 1.0 | 5 | 25.0-60.0 | [ |
NIR-II | 1064 | 34.92 | 45.51 | 1.0 | 5 | 25.0-60.0 |
Table 2 First application of MXenes in PTT on tumor
MXenes material | First report time | NIR range | Wavelength /nm | Extinction coefficient/(L·g-1·cm-1) | Photothermal conversion efficiency/% | NIR power /(W·cm-2) | Irradiation time /min | Temperature range/℃ | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ti3C2 | 2016/10 | NIR-I | 808 | 25.2 | - | 0.8 | 5 | 23.5-60.0 | |
Nb2C | 2017/10 | NIR-I | 808 | 37.6 | 36.5 | 1.5 | 5 | 25.0-60.0 | |
NIR-II | 1064 | 35.4 | 46.65 | 1.5 | 5 | 25.0-60.0 | |||
Ta4C3 | 2017/11 | NIR-I | 808 | 8.67 | 34.9 | 2.0 | 5 | 32.5-65.0 | [ |
Ti2C | 2019/01 | NIR-I | 808 | 7.39 | 87.1 | 2.0 | 2 | 25.5-93.8 | [ |
Mo2C | 2019/04 | NIR-I | 808 | 18.0 | 24.5 | 1.0 | 10 | 25.0-57.8 | [ |
NIR-II | 1064 | 12.3 | 43.3 | 1.0 | 10 | 25.0-62.3 | |||
V2C | 2020/01 | NIR-I | 808 | 38.3 | 48.5 | 0.48 | 10 | 24.0-57.9 | [ |
Ti2N | 2020/11 | NIR-I | 808 | 41.25 | 48.62 | 1.0 | 5 | 25.0-60.0 | [ |
NIR-II | 1064 | 34.92 | 45.51 | 1.0 | 5 | 25.0-60.0 |
Fig. 4 Schematic diagrams of (a) Ti3C2 nanomaterials loaded with DOX for tumor PTT/PDT/CHEMO combined therapy[29], (b) DOX@Ti3C2-SP nanomaterials for tumor PTT/CHEMO combined therapy[32], and (c) Ti3C2@Met@CP nanomaterials for tumor PTT/PDT/CHEMO combined therapy[57] SP: Soybean phospholipid
Fig. 5 Schematic illustrations for (a) combined therapy on HCC cells as assisted by DOX@Ti3C2@mMSNs-RGD at the cell level[58], (b) CTAC@Nb2C-MSN-PEG-RGD composite nanomaterials releaseing CTAC under the action of PTT for combined treatment of tumor[59], (c) AIPH@Nb2C@Si composite nanomaterials generating free radicals under the action of PTT[60], and (d) Nb2C-MSNs-SNO composite nanomaterials releasing NO under the action of PTT for combined treatment of tumor[61]
Fig. 6 Schematic diagrams of (a) MnOx/Ti3C2[64], (b) Ta4C3-IONP[62], (c) MIG[65], (d) GdW10@Ti3C2[66], and (e) Ti3C2@Au[67] composite nanomaterials in tumor theranostics
MXenes | Report time | Cell lines | Treatment strategy | Diagnosis strategy | Molecule for targeting | Ref. |
---|---|---|---|---|---|---|
Ti3C2 | 2016/10 | 4T1 | PTT | - | - | [ |
Ti3C2-SP | 2016/12 | 4T1 | PTT | - | - | [ |
MnOx/Ti3C2-SP | 2017/08 | 4T1 | PTT | PA/MR | - | [ |
Nb2C-PVP | 2017/10 | 4T1 | PTT | PA | - | [ |
Ti3C2 | 2017/10 | HeLa/MCF-7/U251/HEK293 | PTT | PA | - | [ |
Ti3C2-DOX | 2017/11 | HCT-116 | PTT/PDT/CHEMO | - | HA | [ |
MnOx/Ta4C3-SP | 2017/11 | 4T1 | PTT | MR/CT/PA | - | [ |
Ta4C3-SP | 2017/12 | 4T1 | PTT | PA/CT | - | [ |
GdW10@Ti3C2 | 2018/01 | 4T1 | PTT | CT/MR | - | [ |
DOX@Ti3C2-SP | 2018/02 | 4T1 | PTT/CHEMO | PA | - | [ |
Ta4C3-IONP-SP | 2018/02 | 4T1 | PTT | CT/MR | - | [ |
DOX@Ti3C2@mMSNs- RGD | 2018/04 | SMMC-7721 | PTT/CHEMO | - | RGD | [ |
CTAC@Nb2C-MSN-PEG-RGD | 2018/08 | U87 | PTT/CHEMO | PA | RGD | [ |
Ti3C2@Au | 2018/12 | 4T1 | PTT/RT | PA/CT | - | [ |
A@Nb2C@Si | 2019/01 | 4T1 | PTT/CHEMO | PA | - | [ |
Ti2C | 2019/01 | A375/HaCaT/MCF-7/MCF-10A | PTT | - | - | [ |
Mo2C | 2019/04 | 4T1 | PTT | - | - | [ |
Mo2C@C | 2019/04 | HepG2/HUVEC/IOSE80 | PTT/PDT | PA/CT | - | [ |
Au/Ti3C2 | 2019/06 | MCF-7 | PTT | - | - | [ |
Au/Fe3O4/Ti3C2 | 2019/06 | MCF-7 | PTT | - | - | [ |
MIG(Ti3C2-IONP@PEG-GOD) | 2019/10 | 4T1 | PTT/CHEMO | MR | - | [ |
Nb2C-MSNs-SNO | 2019/11 | 4T1 | PTT/CHEMO | PA | - | [ |
Ti2N | 2019/11 | MCF-7/A365/MCF-10A/HaCaT | PDT | - | - | [ |
V2C | 2020/01 | MCF-7 | PTT | - | - | [ |
TO-MX(Ti3C2/Ti2O3) | 2020/02 | A375/HaCaT/MCF-7/MCF-10A | PDT | - | - | [ |
PVP/Nb2C | 2020/04 | 4T1 | PTT | - | - | [ |
Nb2C/zein | 2020/04 | 4T1 | PTT | - | - | [ |
NMQDs-Ti3C2Tx | 2020/04 | ADSCs/HeLa/MCF-7 | PDT/CHEMO | - | - | [ |
Nb2C/PLL | 2020/05 | A375/HaCaT | PDT | - | - | [ |
Nb4C3/PLL | 2020/05 | A375/HaCaT | PDT | - | - | [ |
Ti3C2@Met@CP | 2020/06 | MDA-MB-231 | PTT/PDT/CHEMO | - | - | [ |
DOX@Ti3C2-CoNWs | 2020/06 | 4T1 | PTT/CHEMO | - | - | [ |
Ti3C2/CA4@PLEL | 2020/06 | 4T1/HUVECs | PTT/CHEMO | - | - | [ |
Ti2N | 2020/11 | 4T1/U87/293T | PTT | PA | - | [ |
MXene(Ti3C2)-DOX | 2021/01 | HeLa | PTT/PDT/CHEMO | - | - | [ |
Table 3 MXenes for application in tumor theranostics
MXenes | Report time | Cell lines | Treatment strategy | Diagnosis strategy | Molecule for targeting | Ref. |
---|---|---|---|---|---|---|
Ti3C2 | 2016/10 | 4T1 | PTT | - | - | [ |
Ti3C2-SP | 2016/12 | 4T1 | PTT | - | - | [ |
MnOx/Ti3C2-SP | 2017/08 | 4T1 | PTT | PA/MR | - | [ |
Nb2C-PVP | 2017/10 | 4T1 | PTT | PA | - | [ |
Ti3C2 | 2017/10 | HeLa/MCF-7/U251/HEK293 | PTT | PA | - | [ |
Ti3C2-DOX | 2017/11 | HCT-116 | PTT/PDT/CHEMO | - | HA | [ |
MnOx/Ta4C3-SP | 2017/11 | 4T1 | PTT | MR/CT/PA | - | [ |
Ta4C3-SP | 2017/12 | 4T1 | PTT | PA/CT | - | [ |
GdW10@Ti3C2 | 2018/01 | 4T1 | PTT | CT/MR | - | [ |
DOX@Ti3C2-SP | 2018/02 | 4T1 | PTT/CHEMO | PA | - | [ |
Ta4C3-IONP-SP | 2018/02 | 4T1 | PTT | CT/MR | - | [ |
DOX@Ti3C2@mMSNs- RGD | 2018/04 | SMMC-7721 | PTT/CHEMO | - | RGD | [ |
CTAC@Nb2C-MSN-PEG-RGD | 2018/08 | U87 | PTT/CHEMO | PA | RGD | [ |
Ti3C2@Au | 2018/12 | 4T1 | PTT/RT | PA/CT | - | [ |
A@Nb2C@Si | 2019/01 | 4T1 | PTT/CHEMO | PA | - | [ |
Ti2C | 2019/01 | A375/HaCaT/MCF-7/MCF-10A | PTT | - | - | [ |
Mo2C | 2019/04 | 4T1 | PTT | - | - | [ |
Mo2C@C | 2019/04 | HepG2/HUVEC/IOSE80 | PTT/PDT | PA/CT | - | [ |
Au/Ti3C2 | 2019/06 | MCF-7 | PTT | - | - | [ |
Au/Fe3O4/Ti3C2 | 2019/06 | MCF-7 | PTT | - | - | [ |
MIG(Ti3C2-IONP@PEG-GOD) | 2019/10 | 4T1 | PTT/CHEMO | MR | - | [ |
Nb2C-MSNs-SNO | 2019/11 | 4T1 | PTT/CHEMO | PA | - | [ |
Ti2N | 2019/11 | MCF-7/A365/MCF-10A/HaCaT | PDT | - | - | [ |
V2C | 2020/01 | MCF-7 | PTT | - | - | [ |
TO-MX(Ti3C2/Ti2O3) | 2020/02 | A375/HaCaT/MCF-7/MCF-10A | PDT | - | - | [ |
PVP/Nb2C | 2020/04 | 4T1 | PTT | - | - | [ |
Nb2C/zein | 2020/04 | 4T1 | PTT | - | - | [ |
NMQDs-Ti3C2Tx | 2020/04 | ADSCs/HeLa/MCF-7 | PDT/CHEMO | - | - | [ |
Nb2C/PLL | 2020/05 | A375/HaCaT | PDT | - | - | [ |
Nb4C3/PLL | 2020/05 | A375/HaCaT | PDT | - | - | [ |
Ti3C2@Met@CP | 2020/06 | MDA-MB-231 | PTT/PDT/CHEMO | - | - | [ |
DOX@Ti3C2-CoNWs | 2020/06 | 4T1 | PTT/CHEMO | - | - | [ |
Ti3C2/CA4@PLEL | 2020/06 | 4T1/HUVECs | PTT/CHEMO | - | - | [ |
Ti2N | 2020/11 | 4T1/U87/293T | PTT | PA | - | [ |
MXene(Ti3C2)-DOX | 2021/01 | HeLa | PTT/PDT/CHEMO | - | - | [ |
[1] |
PENG X, PENG L, WU C, et al. Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 2014, 43(10): 3303-3323.
DOI URL |
[2] |
GUO Z, OUYANG J, KIM N Y, et al. Emerging two-dimensional nanomaterials for cancer therapy. ChemPhysChem, 2019, 20(19): 2417-2433.
DOI URL |
[3] |
BALANDIN A A. Phononics of graphene and related materials. ACS Nano, 2020, 14(5): 5170-5178.
DOI URL |
[4] |
WANG T, ZHANG X, MEI L, et al. A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. Nanoscale, 2020, 12(15): 8415-8424.
DOI URL |
[5] |
CUI D, PEREPICHKA D F, MACLEOD J M, et al. Surface- confined single-layer covalent organic frameworks: design, synthesis and application. Chemical Society Reviews, 2020, 49(7): 2020-2038.
DOI URL |
[6] |
ZHANG R, DING Q, ZHANG S, et al. Construction of a continuously layered structure of h-BN nanosheets in the liquid phase via sonication-induced gelation to achieve low friction and wear. Nanoscale, 2019, 11(26): 12553-12562.
DOI URL |
[7] |
WANG Q, ASTRUC D. State of the art and prospects in metal- organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 2020, 120(2): 1438-1511.
DOI URL |
[8] | LI J, SONG Y, WANG Y, et al. Ultrafine PdCu nanoclusters by ultrasonic-assisted reduction on the LDHs/rGO hybrid with significantly enhanced heck reactivity. ACS Applied Materials & Interfaces, 2020, 12(45): 50365-50376. |
[9] |
LI X, LI X, YANG J. Room-temperature ferromagnetism in transition metal embedded borophene nanosheets. Journal of Physical Chemistry Letters, 2019, 10(15): 4417-4421.
DOI URL |
[10] | LI M, HUANG Q. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two- dimensional nanolaminates MXenes. Journal of Inorganic Materials, 2020, 35(1): 1-7. |
[11] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248-4253.
DOI URL |
[12] |
KUMAR S, LEI Y, ALSHAREEF N H, et al. Biofunctionalized two-dimensional Ti3C2MXenes for ultrasensitive detection of cancer biomarker. Biosensors and Bioelectronics, 2018, 121: 243-249.
DOI URL |
[13] |
GEORGE S M, KANDASUBRAMANIAN B. Advancements in MXene-polymer composites for various biomedical applications. Ceramics International, 2020, 46(7): 8522-8535.
DOI URL |
[14] |
GOGOTSI Y, ANASORI B. The rise of MXenes. ACS Nano, 2019, 13(8): 8491-8494.
DOI URL |
[15] | JIANG H, WANG Z, DONG L, et al. Co(OH)2/MXene composites for tunable pseudo-capacitance energy storage. Electrochimica Acta, 2020, 353: 136607-1-9. |
[16] | LEVITT A, ZHANG J, DION G, et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Advanced Functional Materials, 2020, 30(47): 2000739-1-22. |
[17] |
ZHANG Q, YI G, FU Z, et al. Vertically aligned Janus MXene- based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano, 2019, 13(11): 13196-13207.
DOI URL |
[18] |
ZHAO X, ZHA X J, PU J H, et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. Journal of Materials Chemistry A, 2019, 7(17): 10446-10455.
DOI URL |
[19] |
URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385-11391.
DOI URL |
[20] | LIU J, ZHANG H B, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic- interference shielding. Advanced Materials, 2017, 29(38): 1702367-1-6. |
[21] | LI Y, TIAN X, GAO S P, et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Advanced Functional Materials, 2019, 30(5): 1907451-1-12. |
[22] |
ZHU S, FENG Y, LI X, et al. Two-dimensional titanium carbide (Ti3C2) MXene towards enhancing thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Canadian Journal of Chemistry, 2020, 98(11): 697-700.
DOI URL |
[23] | ZHANG H, WANG Z, WANG F, et al. Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta, 2021, 224: 121879-1-7. |
[24] | LIU L, YAO Y, MA K, et al. Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2. Sensors and Actuators B: Chemical, 2021, 331: 129470-1-9. |
[25] |
CHENG J, HU K, LIU Q, et al. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Analytical and Bioanalytical Chemistry, 2021, 413(9): 2543-2551.
DOI URL |
[26] | MA B K, LI M, CHEONG L Z, et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2. Journal of Inorganic Materials, 2020, 35(1): 131-138. |
[27] |
DAI C, CHEN Y, JING X, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano, 2017, 11(12): 12696-12712.
DOI URL |
[28] |
LIN H, GAO S, DAI C, et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 2017, 139(45): 16235-16247.
DOI URL |
[29] |
LIU G, ZOU J, TANG Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces, 2017, 9(46): 40077-40086.
DOI URL |
[30] |
LIN H, WANG X, YU L, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 2017, 17(1): 384-391.
DOI URL |
[31] | GAZZI A, FUSCO L, KHAN A, et al. Photodynamic therapy based on graphene and MXene in cancer theranostics. Frontiers in Bioengineering and Biotechnology, 2019, 7: 295-1-15. |
[32] | HAN X, HUANG J, LIN H, et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 2018, 7(9): 1701394-1-13. |
[33] |
LI Z, YU L, YANG T, et al. Theranostic nanomedicine by surface nanopore engineering. Science China Chemistry, 2018, 61(10): 1243-1260.
DOI URL |
[34] | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2(2): 16098-1-17. |
[35] | SOLEYMANIHA M, SHAHBAZI M A, RAFIEERAD A R, et al. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Advanced Healthcare Materials, 2019, 8(1): 1801137-1-26. |
[36] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78-81.
DOI URL |
[37] |
HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 2014, 26(7): 2374-2381.
DOI URL |
[38] |
LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19(8): 894-899.
DOI URL |
[39] |
LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119.
DOI URL |
[40] |
HUANG Z, CUI X, LI S, et al. Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics, 2020, 9(8): 2233-2249.
DOI URL |
[41] |
XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14(11): 1135-1141.
DOI URL |
[42] |
SHEIN I R, IVANOVSKII A L. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability. Computational Materials Science, 2012, 65: 104-114.
DOI URL |
[43] |
SHEIN I R, IVANOVSKII A L. Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn (n=1, and 2) from MAX phases: structural, electronic properties and relative stability from first principles calculations. Superlattices and Microstructures, 2012, 52(2): 147-157.
DOI URL |
[44] |
KURTOGLU M, NAGUIB M, GOGOTSI Y, et al. First principles study of two-dimensional early transition metal carbides. MRS Communications, 2012, 2(4): 133-137.
DOI URL |
[45] | XU D, LI Z, LI L, et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Advanced Functional Materials, 2020, 30(47): 2000712-1-21. |
[46] |
CHENG Y, YANG F, XIANG G, et al. Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy. Nano Letters, 2019, 19(2): 1179-1189.
DOI URL |
[47] | ZHOU Y, FENG W, QIAN X, et al. Construction of 2D antimony(III) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Applied Materials & Interfaces, 2019, 11(22): 19712-19723. |
[48] | SZUPLEWSKA A, KULPINSKA D, DYBKO A, et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Materials Science & Engineering C: Materials for Biological Applications, 2019, 98: 874-886. |
[49] | FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Advanced Functional Materials, 2019, 29(22): 1901942-1-15. |
[50] |
ZADA S, DAI W, KAI Z, et al. Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angewandte Chemie International Edition, 2020, 59(16): 6601-6606.
DOI URL |
[51] | SHAO J, ZHANG J, JIANG C, et al. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chemical Engineering Journal, 2020, 400: 126009-1-12. |
[52] | ZHANG Q, GUO Q, CHEN Q, et al. Highly efficient 2D NIR-II photothermal agent with fenton catalytic activity for cancer synergistic photothermal-chemodynamic therapy. Advanced Science, 2020, 7(7): 1902576-1-10. |
[53] |
ZHANG D Y, XU H, HE T, et al. Cobalt carbide-based theranostic agents for in vivo multimodal imaging guided photothermal therapy. Nanoscale, 2020, 12(13): 7174-7179.
DOI URL |
[54] |
XUAN J, WANG Z, CHEN Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angewandte Chemie International Edition, 2016, 55(47): 14569-14574.
DOI URL |
[55] |
DONG L, YE C, ZHENG L, et al. Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy. Nanophotonics, 2020, 9(8): 2125-2145.
DOI URL |
[56] |
SUNDARAM A, PONRAJ J S, WANG C, et al. Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 2020, 8(23): 4990-5013.
DOI URL |
[57] |
BAI L, YI W, SUN T, et al. Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer. Journal of Materials Chemistry B, 2020, 8(30): 6402-6417.
DOI URL |
[58] | LI Z, ZHANG H, HAN J, et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Advanced Materials, 2018, 30(25): 1706981-1-11. |
[59] |
HAN X, JING X, YANG D, et al. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo- photothermal cancer therapy in NIR-II biowindow. Theranostics, 2018, 8(16): 4491-4508.
DOI URL |
[60] | XIANG H, LIN H, YU L, et al. Hypoxia-irrelevant photonic thermodynamic cancer nanomedicine. ACS Nano, 2019, 13(2): 2223-2235. |
[61] | YIN H, GUAN X, LIN H, et al. Nanomedicine-enabled photonic thermogaseous cancer therapy. Advanced Science, 2020, 7(2): 1901954-1-12. |
[62] |
LIU Z, LIN H, ZHAO M, et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics, 2018, 8(6): 1648-1664.
DOI URL |
[63] |
WANG Y, FENG W, CHEN Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters, 2020, 31(4): 937-946.
DOI URL |
[64] |
DAI C, LIN H, XU G, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chemistry of Materials, 2017, 29(20): 8637-8652.
DOI URL |
[65] | LIANG R, LI Y, HUO M, et al. Triggering sequential catalytic fenton reaction on 2D MXenes for hyperthermia-augmented synergistic nanocatalytic cancer therapy. ACS Applied Materials & Interfaces, 2019, 11(46): 42917-42931. |
[66] |
ZONG L, WU H, LIN H, et al. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Research, 2018, 11(8): 4149-4168.
DOI URL |
[67] |
TANG W, DONG Z, ZHANG R, et al. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS Nano, 2019, 13(1): 284-294.
DOI URL |
[68] |
YU X, CAI X, CUI H, et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 2017, 9(45): 17859-17864.
DOI URL |
[69] |
LIN H, WANG Y, GAO S, et al. Theranostic 2D tantalum carbide (MXene). Advanced Materials, 2018, 30(4):1703284.
DOI URL |
[70] |
ZHANG Q, HUANG W, YANG C, et al. The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomaterials Science, 2019, 7(7): 2729-2739.
DOI URL |
[71] |
HUSSEIN E A, ZAGHO M M, RIZEQ B R, et al. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. International Journal of Nanomedicine, 2019, 14: 4529-4539.
DOI URL |
[72] | SZUPLEWSKA A, WOJCIECHOWSKA A, POZNIAK S, et al. Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity. Journal of Nanobiotechnology, 2019, 17(1): 114-1-14. |
[73] | JASTRZĘBSKA A M, SZUPLEWSKA A, WOJCIECHOWSKA A, et al. On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 2020, 7(2): 025018-1-12. |
[74] |
LIN S, LIN H, YANG M, et al. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale, 2020, 12(18): 10265-10276.
DOI URL |
[75] |
ZHOU B, PU Y, LIN H, et al. In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. Journal of Materials Chemistry B, 2020, 8(24): 5257-5266.
DOI URL |
[76] | LI X, LIU F, HUANG D, et al. Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Advanced Functional Materials, 2020, 30(24): 2000308-1-10. |
[77] | JASTRZĘBSKA A M, SZUPLEWSKA A, WOJCIECHOWSKA A, et al. Juggling surface charges of 2D niobium carbide MXenes for a reactive oxygen species scavenging and effective targeting of the malignant melanoma cell cycle into programmed cell death. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7942-7951. |
[78] | LIU Y, HAN Q, YANG W, et al. Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. Materials Science & Engineering C: Materials for Biological Applications, 2020, 116: 111212-1-11. |
[79] | TAO N, LIU Y, WU Y, et al. Minimally invasive antitumor therapy using biodegradable nanocomposite micellar hydrogel with functionalities of NIR-II photothermal ablation and vascular disruption. ACS Applied Biomaterials, 2020, 3(7): 4531-4542. |
[80] | GUO Y, WANG H, FENG X, et al. 3D MXene microspheres with honeycomb architecture for tumor photothermal/photodynamic /chemo combination therapy. Nanotechnology, 2021, 32(19): 195701-1-11. |
[81] |
ZHOU S, GU C, LI Z, et al. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Applied Surface Science, 2019, 498: 143889.
DOI URL |
[82] | YIN J, PAN S, GUO X, et al. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/ osteogenesis of bone defects. Nano-Micro Letters, 2021, 13(1): 30-1-18. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||