Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (4): 376-386.DOI: 10.15541/jim20210420
• REVIEW • Previous Articles Next Articles
WU Ming1(), XIAO Yanan1, LI Huaqiang1, LIU Yongbin1, GAO Jinghui1(
), ZHONG Lisheng1, LOU Xiaojie2
Received:
2021-07-05
Revised:
2021-08-09
Published:
2022-04-20
Online:
2021-11-01
Contact:
GAO Jinghui, professor. E-mail: gaojinghui@xjtu.edu.cnAbout author:
WU Ming (1992-), male, PhD, assistant professor. E-mail: wuming@xjtu.edu.cn
Supported by:
CLC Number:
WU Ming, XIAO Yanan, LI Huaqiang, LIU Yongbin, GAO Jinghui, ZHONG Lisheng, LOU Xiaojie. Negative Electrocaloric Effects in Antiferroelectric Materials: a Review[J]. Journal of Inorganic Materials, 2022, 37(4): 376-386.
Fig. 1 Schematic of polarization switching, temperature change and entropy change during cooling cycle of electrocaloric effect (a) In virgin state, the ferroelectric polarization randomly distributs; (b) With the application of electric field, the ferroelectric polarization is aligned, and the temperature of the ferroelectric materials is increased; (c) After an isothermal process, the temperature of the ferroelectric materials decreases to the environment temperature; (d) After removal of the electric field, the ferroelectric polarization recovers randomly distribution, the temperature of the ferroelectric materials decreases
Fig. 2 Feasible combination of positive and negative electrocaloric effect[10] (a) Schematic of the cooling cycle; (b) Heat flow of the dual cooling cycle measured by DSC
Fig. 3 Direct measurements of electrocaloric effect (a) Thermocouple or thermometer[15]; (b) Scanning thermal microscopy[16]; (c) Infra-red camera[17]; (d) Modified differential scanning calorimetry[18]
Fig. 4 Electric domain and representative hysteresis loop of antiferroelectrics, schematic of a possible mechanism of negative electrocaloric effect in antiferroelectrics[27] Electric domain of antiferroelectrics (a) before and (b) after being polarized; (c) Representative hysteresis loop of antiferroelectrics; Schematic of a possible mechanism of negative ECE in antiferroelectrics (d1) without any electric field and (d2) under a modest electric field
Fig. 5 Negative electrocaloric effect in PbZrO3-based antiferroelectric thin films (a) P-T curves and (b) temperature change of (Pb0.97, La0.02)(Zr0.95,Ti0.05)O3 thin film[21]; (c) P-T curves and (d) temperature change of 4% (molar ratio) Eu doped PbZrO3 thin film[32]; (e) P-T curves and (f) temperature change of 1% Yb (molar ratio) doped PbZrO3 thin film[33]
Fig. 6 Interface-defect-enhanced negative electrocaloric effect in PbZrO3 thin films[29] (a) Mechanism of the defect-dipole-suppressed antiferroelectric-ferroelectric phase transition during electric cycling; (b) Antiferroelctric-ferroelectric phase transition field of the PbZrO3 thin films with interface defect (p-PZO) and without interface defect (f-PZO); (c) Comparison of negative ECE in different materials Colorful figures are available on website
Fig. 7 Negative electrocaloric effects of PbZrO3, (Pb0.97,La0.02)(Zr0.95,Ti0.05)O3 and B-site nonstoichiometric (Pb0.97,La0.02)(Zr0.95,Ti0.05)1+yO3 (y=-0.03, -0.01, 0.01, 0.03) ceramics under different electric fields (a) PbZrO3[34]; (b) (Pb0.97,La0.02)(Zr0.95,Ti0.05)O3[35]; (c) B-site nonstoichiometric (Pb0.97,La0.02)(Zr0.95,Ti0.05)1+yO3 (y=-0.03, -0.01, 0.01, 0.03)[36] Colorful figures are available on website
Fig. 8 Hysteresis loops of PNZST13/2/2 and PNZST43/8/2 under different temperatures, P-T curves, temperature change ΔT and entropy change ΔS of PNZST13/2/2 and PNZST43/8/2[37] (a) Hysteresis loops of PNZST13/2/2; (b) Hysteresis loops of PNZST43/8/2; (c-e) P-T curves, temperature change ΔT and entropy change ΔS of PNZST13/2/2; (f-h) P-T curves, temperature change ΔT and entropy change ΔS of PNZST43/8/2 Colorful figures are available on website
Fig. 9 Electrocaloric effect of (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 single crystal, (Pb0.97La0.02)(Zr0.66Sn0.27Ti0.07)O3 single crystal, (Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3 ceramics, and (Pb0.97La0.02)(ZrxSn0.94-xTi0.06)O3 ceramics (a, b) Hysteresis loops and temperature change ΔT of the (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 single crystal[9]; (c, d) Hysteresis loops and temperature change ΔT of the (Pb0.97La0.02)(Zr0.66Sn0.27Ti0.07)O3 single crystal[40]; (e) Temperature change ΔT of the (Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3 ceramics[39]; (f) Comparison of the temperature change in (Pb0.97La0.02)(ZrxSn0.94-xTi0.06)O3 ceramics with other dielectric materials[39] Colorful figures are available on website
[1] | CORREIA T, ZHANG Q. New Generation of Coolers: Electrocaloric Materials New York: Springer, 2014: 34 |
[2] |
SCOTT J. Electrocaloric materials. Annual Review of Materials Research, 2011, 41: 229-240.
DOI URL |
[3] |
FÄHLER S, RÖßLER U, KASTNER O, et al. Caloric effects in ferroic materials: new concepts for cooling. Advanced Engineering Materials, 2012, 14(1/2): 10-19.
DOI URL |
[4] |
SHI J, HAN D, LI Z, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200-1225.
DOI URL |
[5] |
NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575(7783): 468-472.
DOI URL |
[6] |
MISCHENKO A, ZHANG Q, SCOTT J, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311(5765): 1270-1271.
DOI URL |
[7] |
WU H, ZHU J, ZHANG T. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy, 2015, 16: 419-427.
DOI URL |
[8] |
PARK M, KIM H, KIM Y, et al. Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Advanced Materials, 2016, 28(36): 7956-7961.
DOI URL |
[9] |
ZHUO F, LI Q, GAO J, et al. Coexistence of multiple positive and negative electrocaloric responses in (Pb,La)(Zr,Sn,Ti)O3 single crystal. Applied Physics Letters, 2016, 108(8):082904.
DOI URL |
[10] |
LI J, QIN S, BAI Y, et al. Flexible control of positive and negative electrocaloric effects under multiple fields for a giant improvement of cooling capacity. Applied Physics Letters, 2017, 111(9):093901.
DOI URL |
[11] |
LI J, WU H, LI J, et al. Room-temperature symmetric giant positive and negative electrocaloric effect in PbMg0.5W0.5O3 antiferroelectric ceramic. Advanced Functional Materials, 2021, 31(33):2101176.
DOI URL |
[12] |
LU S, TANG X, WU S, et al. Large electrocaloric effect in ferroelectric materials. Journal of Inorganic Materials, 2014, 29(1): 6-12.
DOI URL |
[13] | YU Y, DU H, YANG Z, et al. Electrocaloric effect of lead-free bulk ceramics: current status and challenges. Journal of Inorganic Materials, 2020, 35(6): 633-646. |
[14] |
WU M, SONG D, VATS G, et al. Defect-controlled electrocaloric effect in PbZrO3 thin films. Journal of Materials Chemistry C, 2018, 6(38): 10332-10340.
DOI URL |
[15] |
JIA Y, SUNGTAEK J. Direct characterization of the electrocaloric effects in thin films supported on substrates. Applied Physics Letters, 2013, 103(4):042903.
DOI URL |
[16] |
SHAN D, PAN K, LIU Y, et al. High fidelity direct measurement of local electrocaloric effect by scanning thermal microscopy. Nano Energy, 2020, 67: 104203.
DOI URL |
[17] |
LIU Y, SCOTT J, DKHIL B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Applied Physics Reviews, 2016, 3(3):031102.
DOI URL |
[18] |
SANLIALP M, SHVARTSMAN V, ACOSTA M, et al. Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3) TiO3 ceramics obtained by direct measurements. Applied Physics Letters, 2015, 106(6):062901.
DOI URL |
[19] |
LI J, ZHANG D, QIN S, et al. Large room-temperature electrocaloric effect in lead-free BaHfxTi1-xO3 ceramics under low electric field. Acta Materialia, 2016, 115: 58-67.
DOI URL |
[20] |
WU P, LOU X, LI J, et al. Direct and indirect measurement of electrocaloric effect in lead-free (100-x)Ba(Hf0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics near multi-phase boundary. Journal of Alloys and Compounds, 2017, 725: 275-282.
DOI URL |
[21] |
GENG W, LIU Y, MENG X, et al. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Advanced Materials, 2015, 27(20): 3165-3169.
DOI URL |
[22] |
MA Y, GRÜNEBOHM A, MEYER K, et al. Positive and negative electrocaloric effect in BaTiO3 in the presence of defect dipoles. Physical Review B, 2016, 94(9):094113.
DOI URL |
[23] |
WEYLAND F, BRADEŠKO A, MA Y, et al. Impact of polarization dynamics and charged defects on the electrocaloric response of ferroelectric Pb(Zr,Ti)O3 ceramics. Energy Technology, 2018, 6(8): 1519-1525.
DOI URL |
[24] |
LI J, YIN R, SU X, et al. Complex phase transitions and associated electrocaloric effects in different oriented PMN-30PT single crystals under multi-fields of electric field and temperature. Acta Materialia, 2020, 182: 250-256.
DOI URL |
[25] | VATS G, KUMAR A, ORTEGA N, et al. Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures. Energy & Environmental Science, 2016, 9(4): 1335-1345. |
[26] |
ZHANG T, LI W, HOU Y, et al. Positive/negative electrocaloric effect induced by defect dipoles in PZT ferroelectric bilayer thin films. RSC Advances, 2016, 6(76): 71934-71939.
DOI URL |
[27] |
HAO X, ZHAI J, KONG L, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in Materials Science, 2014, 63: 1-57.
DOI URL |
[28] |
GRüNEBOHM A, MA Y, MARATHE M, et al. Origins of the inverse electrocaloric effect. Energy Technology, 2018, 6(8): 1491-1511.
DOI URL |
[29] | WU M, SONG D, GUO M, et al. Remarkably enhanced negative electrocaloric effect in PbZrO3 thin film by interface engineering. ACS Applied Materials & Interfaces, 2019, 11(40): 36863-36870. |
[30] |
GOUPIL F, BERENOV A, AXELSSON A, et al. Direct and indirect electrocaloric measurements on <001> PbMg1/3Nb2/3O3-30PbTiO3 single crystals. Journal of Applied Physics, 2012, 111(12):124109.
DOI URL |
[31] |
BAI Y, ZHENG G, SHI S. Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature. Materials Research Bulletin, 2011, 46(11): 1866-1869.
DOI URL |
[32] |
YE M, LI T, SUN Q, et al. A giant negative electrocaloric effect in Eu-doped PbZrO3 thin films. Journal of Materials Chemistry C, 2016, 4(16): 3375-3378.
DOI URL |
[33] |
WANG W, CHEN X, SUN Q, et al. Tailoring the negative electrocaloric effect of PbZrO3 antiferroelectric thin films by Yb doping. Journal of Alloys and Compounds, 2020, 830: 154581.
DOI URL |
[34] |
PIRC R, ROŽIČ B, KORUZA J, et al. Negative electrocaloric effect in antiferroelectric PbZrO3. EPL (Europhysics Letters), 2014, 107(1):17002.
DOI URL |
[35] |
ZHAO Y, LIU Q, TANG X, et al. Giant negative electrocaloric effect in anti-ferroelectric (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics. ACS Omega, 2019, 4(11): 14650-14654.
DOI URL |
[36] |
NIU Z, JIANG Y, TANG X, et al. Giant negative electrocaloric effect in B-site non-stoichiometric (Pb0.97La0.02)(Zr0.95Ti0.05)1+yO3 anti-ferroelectric ceramics. Materials Research Letters, 2018, 6(7): 384-389.
DOI URL |
[37] |
XU Z, FAN Z, LIU X, et al. Impact of phase transition sequence on the electrocaloric effect in Pb(Nb,Zr,Sn,Ti)O3 ceramics. Applied Physics Letters, 2017, 110(8):082901.
DOI URL |
[38] |
ZHUO F, LI Q, YAN Q, et al. Temperature induced phase transformations and negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Journal of Applied Physics, 2017, 122(15):154101.
DOI URL |
[39] | ZHUO F, LI Q, GAO J, et al. Giant negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectrics near room temperature. ACS Applied Materials & Interfaces, 2018, 10(14): 11747-11755. |
[40] |
ZHUO F, LI Q, QIAO H, et al. Field-induced phase transitions and enhanced double negative electrocaloric effects in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Applied Physics Letters, 2018, 112(13):133901.
DOI URL |
[41] |
CHEN J, TANG Z, LU Q, et al. Giant negative electrocaloric effect over a broad temperature range in lead-free based Bi0.5(K0.15Na0.85)0.05TiO3 relaxor ferroelectric films. Journal of Alloys and Compounds, 2018, 756: 62-67.
DOI URL |
[42] |
GUO M, WU M, GAO W, et al. Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra-low temperature range. Journal of Materials Chemistry C, 2019, 7(3): 617-621.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||