Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (10): 1079-1086.DOI: 10.15541/jim20220039
• RESEARCH ARTICLE • Previous Articles Next Articles
REN PeiAn(), WANG Cong, ZI Peng, TAO Qirui, SU Xianli(
), TANG Xinfeng(
)
Received:
2022-01-24
Revised:
2022-03-04
Published:
2022-10-20
Online:
2022-04-07
Contact:
TANG Xinfeng, professor. E-mail: tangxf@whut.edu.cn;About author:
REN Peian (1996-), male, Master candidate. E-mail: renpeian@whut.edu.cn
Supported by:
CLC Number:
REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds[J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086.
Fig. 3 Backscattered electron images of the polished surfaces for samples Cu2SnSe2.9Te0.1 (a) and Cu2SnSe2.85Te0.15 (b) with elemental distribution mappings of Cu2SnSe2.9Te0.1(c-f)
Sample | σ/(×104, S·m-1) | S/ (μV·K-1) | n/(×1017, cm-3) | μ/(cm2· V-1·s-1) |
---|---|---|---|---|
Cu2SnSe3 | 0.02 | 472.18 | 6.25 | 24.92 |
Cu2SnSe2.99Te0.01 | 0.08 | 408.07 | 24.34 | 21.04 |
Cu2SnSe2.96Te0.04 | 0.13 | 294.12 | 53.77 | 15.68 |
Cu2SnSe2.93Te0.07 | 0.07 | 402.62 | 40.29 | 10.14 |
Cu2SnSe2.9Te0.1 | 0.11 | 298.21 | 59.63 | 11.67 |
Cu2SnSe2.85Te0.15 | 0.10 | 356.49 | 21.27 | 27.98 |
Cu2SnSe2.8Te0.2 | 0.13 | 241.73 | 24.05 | 21.64 |
Table 1 Electrical conductivities (σ), Seebeck coefficients (S), carrier concentrations (n) and carrier mobilities (μ) of Cu2SnSe3-xTex samples at room temperature
Sample | σ/(×104, S·m-1) | S/ (μV·K-1) | n/(×1017, cm-3) | μ/(cm2· V-1·s-1) |
---|---|---|---|---|
Cu2SnSe3 | 0.02 | 472.18 | 6.25 | 24.92 |
Cu2SnSe2.99Te0.01 | 0.08 | 408.07 | 24.34 | 21.04 |
Cu2SnSe2.96Te0.04 | 0.13 | 294.12 | 53.77 | 15.68 |
Cu2SnSe2.93Te0.07 | 0.07 | 402.62 | 40.29 | 10.14 |
Cu2SnSe2.9Te0.1 | 0.11 | 298.21 | 59.63 | 11.67 |
Cu2SnSe2.85Te0.15 | 0.10 | 356.49 | 21.27 | 27.98 |
Cu2SnSe2.8Te0.2 | 0.13 | 241.73 | 24.05 | 21.64 |
Fig. 5 Relationship between carrier concentration and Seebeck coefficient for Cu2SnSe3-xTex and Cu2Sn1-yInySe2.9Te0.1 samples Colorful figure is available on website
Sample | σ/(×104, S·m-1) | S/ (μV·K-1) | n/(×1019, cm-3) | μ/(cm2·V-1·s-1) |
---|---|---|---|---|
Cu2SnSe2.9Te0.1 | 0.11 | 298.21 | 0.59 | 11.68 |
Cu2Sn0.995In0.005Se2.9Te0.1 | 0.97 | 220.50 | 4.35 | 13.95 |
Cu2Sn0.99In0.01Se2.9Te0.1 | 1.26 | 185.79 | 7.15 | 10.99 |
Cu2Sn0.985In0.015Se2.9Te0.1 | 1.50 | 159.47 | 11.36 | 8.25 |
Cu2Sn0.98In0.02Se2.9Te0.1 | 1.67 | 152.91 | 10.54 | 10.08 |
Cu2Sn0.975In0.025Se2.9Te0.1 | 2.07 | 130.39 | 20.60 | 6.28 |
Cu2Sn0.97In0.03Se2.9Te0.1 | 2.27 | 120.35 | 20.00 | 7.09 |
Table 2 Electrical conductivities (σ), Seebeck coefficients (S), carrier concentrations (n) and carrier mobilities (μ) of Cu2Sn1-yInySe2.9Te0.1 samples at room temperature
Sample | σ/(×104, S·m-1) | S/ (μV·K-1) | n/(×1019, cm-3) | μ/(cm2·V-1·s-1) |
---|---|---|---|---|
Cu2SnSe2.9Te0.1 | 0.11 | 298.21 | 0.59 | 11.68 |
Cu2Sn0.995In0.005Se2.9Te0.1 | 0.97 | 220.50 | 4.35 | 13.95 |
Cu2Sn0.99In0.01Se2.9Te0.1 | 1.26 | 185.79 | 7.15 | 10.99 |
Cu2Sn0.985In0.015Se2.9Te0.1 | 1.50 | 159.47 | 11.36 | 8.25 |
Cu2Sn0.98In0.02Se2.9Te0.1 | 1.67 | 152.91 | 10.54 | 10.08 |
Cu2Sn0.975In0.025Se2.9Te0.1 | 2.07 | 130.39 | 20.60 | 6.28 |
Cu2Sn0.97In0.03Se2.9Te0.1 | 2.27 | 120.35 | 20.00 | 7.09 |
[1] |
ZHOU W, YAMAMOTO K, MIURA A, et al. Seebeck-driven transverse thermoelectric generation. Nature Materials, 2021, 20(4): 463-467.
DOI PMID |
[2] |
FREIRE L O, NAVARRETE L M, CORRALES B P, et al. Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 2021, 7: 355-361.
DOI URL |
[3] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457-1461.
DOI PMID |
[4] |
YANG D W, LUO T T, SU X X, et al. Unveiling the intrinsic low thermal conductivity of BiAgSeS through entropy engineering in SHS kinetic process. Journal of Inorganic Materials, 2021, 36(9): 991-998.
DOI |
[5] |
CHEN B Q, CHEN L D, ZHANG Q H. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019, 34(3): 279-293.
DOI URL |
[6] |
ELSHEIKH M H, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 2014, 30: 337-355.
DOI URL |
[7] |
SHEN J J, FANG T, FU T Z, et al. Lattice thermal conductivity in thermoelectric materials. Journal of Inorganic Materials, 2019, 34(3): 260-268.
DOI URL |
[8] |
LIU W, YANG L, CHEN Z, et al. Promising and eco-friendly Cu2X-based thermoelectric materials: progress and applications. Advanced Materials, 2020, 32(8): 1905703.
DOI URL |
[9] |
ZHOU X Y, LIU Y, ZHANG C, et al. Optimization of thermoelectric transport properties of Nb-doped Mo1-xWxSeTe solid solutions. Journal of Inorganic Materials, 2020, 35(12): 1373-7379.
DOI URL |
[10] |
YANG X, SU X L, YAN Y G, et al. Structures and thermoelectric properties of (GeTe)nBi2Te3. Journal of Inorganic Materials, 2021, 36(1): 75-80.
DOI URL |
[11] |
SHUAI J, SUN Y, TAN X, et al. Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high- performance GeTe thermoelectric material. Small, 2020, 16(13): 1906921.
DOI URL |
[12] | HONG M, ZHENG K, LYV W, et al. Computer-aided design of high-efficiency GeTe-based thermoelectric devices. Energy & Environmental Science, 2020, 13: 1856-1864. |
[13] |
SU X, WEI P, LI H, et al. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Advanced Materials, 2017, 29(20): 1602013.
DOI URL |
[14] |
HUANG L, LU J, MA D, et al. Facile in situ solution synthesis of SnSe/rGo nanocomposites with enhanced thermoelectric performance. Journal of Materials Chemistry A, 2020, 8(3): 1394-1402.
DOI URL |
[15] |
YANG Q Y, QIU P F, SHI X, et al. Application of entropy engineering in thermoelectrics. Journal of Inorganic Materials, 2021, 36(4): 347-354.
DOI |
[16] |
SHI X, XI L, FAN J, et al. Cu-Se bond network and thermoelectric compounds with complex diamondlike structure. Chemistry of Materials, 2010, 22(22): 6029-6031.
DOI URL |
[17] |
MING H, ZHU G, ZHU C, et al. Boosting thermoelectric performance of Cu2SnSe3 via comprehensive band structure regulation and intensified phonon scattering by multidimensional defects. ACS Nano, 2021, 15: 10532-10541.
DOI URL |
[18] | DENG T, XING T, BROD M K, et al. Discovery of high- performance thermoelectric copper chalcogenide using modified diffusion-couple high-throughput synthesis and automated histogram analysis technique. Energy & Environmental Science, 2020, 13(9): 3041-3053. |
[19] |
SIYAR M, CHO J Y, YOUN Y, et al. Effect of annealing temperature on the phase transition, band gap and thermoelectric properties of Cu2SnSe3. Journal of Materials Chemistry C, 2018, 6(7): 1780-1788.
DOI URL |
[20] |
FAN J, SCHNELLE W, ANTONYSHYN I, et al. Structural evolvement and thermoelectric properties of Cu3-xSnxSe3 compounds with diamond-like crystal structures. Dalton Transactions, 2014, 43(44): 16788-16794.
DOI URL |
[21] |
DELGADO G, MORA A, MARCANO G, et al. Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Materials Research Bulletin, 2003, 38(15): 1949-1955.
DOI URL |
[22] |
CHOI S G, KANG J, LI J, et al. Optical function spectra and bandgap energy of Cu2SnSe3. Applied Physics Letters, 2015, 106(4): 043902.
DOI URL |
[23] |
MARCANO G, RINCÓN C, DE CHALBAUD L, et al. Crystal growth and structure, electrical, and optical characterization of the semiconductor Cu2SnSe3. Journal of Applied Physics, 2001, 90(4): 1847-1853.
DOI URL |
[24] |
XI L, ZHANG Y, SHI X, et al. Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X= Se, S) from first principles. Physical Review B, 2012, 86(15): 155201.
DOI URL |
[25] | CHENG X, YANG D, SU X, et al. Synergistically enhanced thermoelectric performance of Cu2SnSe3-based composites via Ag doping balance. ACS Applied Materials & Interfaces, 2021, 13(46): 55178-55187. |
[1] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[2] | LU Zhiqiang, LIU Keke, LI Qiang, HU Qin, FENG Liping, ZHANG Qingjie, WU Jinsong, SU Xianli, TANG Xinfeng. Donor-like Effect and Thermoelectric Performance in p-Type Bi0.5Sb1.5Te3 Alloy [J]. Journal of Inorganic Materials, 2023, 38(11): 1331-1337. |
[3] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(11): 1338-1344. |
[4] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[5] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[6] | LU Xu, HOU Jichong, ZHANG Qiang, FAN Jianfeng, CHEN Shaoping, WANG Xiaomin. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds [J]. Journal of Inorganic Materials, 2021, 36(8): 835-840. |
[7] | BAI Jiawei, YANG Jing, LÜ Zhenfei, TANG Xiaodong. Magnetic and Dielectric Properties of Ti 4+-doped M-type Hexaferrite BaFe12-xTixO19 Ceramics [J]. Journal of Inorganic Materials, 2021, 36(1): 43-48. |
[8] | YANG Xiao, SU Xianli, YAN Yonggao, TANG Xinfeng. Structures and Thermoelectric Properties of (GeTe)nBi2Te3 [J]. Journal of Inorganic Materials, 2021, 36(1): 75-80. |
[9] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
[10] | LI Zhou, XIAO Chong. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach [J]. Journal of Inorganic Materials, 2019, 34(3): 294-300. |
[11] | LI Song-Hao, ZHANG Xin, LIU Hong-Liang, ZHENG Liang, ZHANG Jiu-Xing. Synthesis and Thermoelectric Properties of Ag-doped SnSe [J]. Journal of Inorganic Materials, 2016, 31(7): 751-755. |
[12] | WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan, MAO Jian-Hui, XING Jiao-Jiao, LI Yi-Huai. PPP Addition to Improve Thermoelectric Properties of ZnO-based Thermoelectric Composites [J]. Journal of Inorganic Materials, 2016, 31(11): 1249-1254. |
[13] | ZHAN Bin, LAN Jin-Le, LIU Yao-Chun, DING Jing-Xuan, LIN Yuan-Hua, NAN Ce-Wen. Research Progress of Oxides Thermoelectric Materials [J]. Journal of Inorganic Materials, 2014, 29(3): 237-244. |
[14] | WU Zi-Hua, XIE Hua-Qing, ZENG Qing-Feng. Thermoelectric Properties of Ni-doped ZnO Synthesized by Sol-Gel Processing [J]. Journal of Inorganic Materials, 2013, 28(9): 921-924. |
[15] | DU Bao-Li, LI Han, TANG Xin-Feng. Enhanced Thermoelectric Performance in Na/Se Doped p-type AgSbTe2 Compound [J]. Journal of Inorganic Materials, 2011, 26(7): 680-684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||