Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (10): 1073-1078.DOI: 10.15541/jim20220077
Special Issue: 【结构材料】核用陶瓷
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Lielin(), XIE Hua, XIE Yuqi, HU Pingtao, YIN Wen, REN Xinyue, DING Yun
Received:
2022-02-16
Revised:
2022-03-23
Published:
2022-10-20
Online:
2022-04-07
About author:
WANG Lielin (1982-), male, PhD, associate professor. E-mail: wanglielin@swust.edu.cn
Supported by:
CLC Number:
WANG Lielin, XIE Hua, XIE Yuqi, HU Pingtao, YIN Wen, REN Xinyue, DING Yun. Structural Evolution and Chemical Durability of Thorium-incorporated Nd2Zr2O7 Pyrochlore at A and B Sites[J]. Journal of Inorganic Materials, 2022, 37(10): 1073-1078.
Nd1.8Th0.2Zr2O7 | Nd2Zr2O7 | Nd2Zr1.8Th0.2O7 | |
---|---|---|---|
Lattice parameter/nm | 1.06370(2) | 1.06744(5) | 1.06781(4) |
Unit cell volume/nm3 | 1.203 | 1.216 | 1.217 |
x-parameter of 48f oxygen | 0.3322(6) | 0.3287(6) | 0.3365(5) |
A-O48f bond distance | 2.5932(5) | 2.6285(4) | 2.5713(4) |
B-O48f bond distance | 2.0737(3) | 2.0660(2) | 2.1017(2) |
A-B bond distance | 3.7607(4) | 3.7739(1) | 3.7753(2) |
A-8a bond distance | 2.3029(2) | 2.3110(1) | 2.3118(3) |
Rp | 4.66% | 5.17% | 4.43% |
Rwp | 6.04% | 6.79% | 5.94% |
χ2 | 2.614 | 1.932 | 2.237 |
Table 1 Rietveld refinement parameters of samples Nd1.8Th0.2 Zr2O7, Nd2Zr2O7 and Nd2Zr1.8Th0.2O7
Nd1.8Th0.2Zr2O7 | Nd2Zr2O7 | Nd2Zr1.8Th0.2O7 | |
---|---|---|---|
Lattice parameter/nm | 1.06370(2) | 1.06744(5) | 1.06781(4) |
Unit cell volume/nm3 | 1.203 | 1.216 | 1.217 |
x-parameter of 48f oxygen | 0.3322(6) | 0.3287(6) | 0.3365(5) |
A-O48f bond distance | 2.5932(5) | 2.6285(4) | 2.5713(4) |
B-O48f bond distance | 2.0737(3) | 2.0660(2) | 2.1017(2) |
A-B bond distance | 3.7607(4) | 3.7739(1) | 3.7753(2) |
A-8a bond distance | 2.3029(2) | 2.3110(1) | 2.3118(3) |
Rp | 4.66% | 5.17% | 4.43% |
Rwp | 6.04% | 6.79% | 5.94% |
χ2 | 2.614 | 1.932 | 2.237 |
Fig. 6 Raman peak intensity variation of samples Nd1.8Th0.2Zr2O7, Nd2Zr2O7 and Nd2Zr1.8Th0.2O7 The peak intensity is normalized to the intensity of 299 cm-1
[1] |
RINGWOOD A E, KESSON S E, WARE N G, et al. Immobilization of high level nuclear reactor wastes in SYNROC. Nature, 1979, 278: 219-223.
DOI URL |
[2] |
ORLOVA A I, OJOVAN M I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 2019, 12(16): 2638.
DOI URL |
[3] |
CLARK B M, TUMURUGOTI P, SUNDARAM S K, et al. Preparation and characterization of multiphase ceramic designer waste forms. Scientific Reports, 2021, 11: 4512.
DOI PMID |
[4] |
WANG S X, BEGG B D, WANG L M, et al. Radiation stability of gadolinium zirconate: a waste form for plutonium disposition. Journal of Materials Research, 1999, 14(12): 4470-4473.
DOI URL |
[5] |
YANG K, KEITH B, ZHU W, et al. Multicomponent pyrochlore solid solutions with uranium incorporation-a new perspective of materials design for nuclear applications. Journal of the European Ceramic Society, 2021, 41(4): 2870-2882.
DOI URL |
[6] | LIAN J, WANG L M, HAIRE R G, et al. Ion beam irradiation in La2Zr2O7-Ce2Zr2O7pyrochlore. Nuclear Instruments and Methods in Physics Research Section B, 2004, 218: 236-243. |
[7] | SHARMA S K, GROVER V, TYAGI A K, et al. Probing the temperature effects in the radiation stability of Nd2Zr2O7 pyrochlore under swift ion irradiation. Materialia, 2019, 6: 2589-1529. |
[8] |
CHAKOUMAKOS B C. Systematics of the pyrochlore structure type, ideal A2B2X6Y. Journal of Solid State Chemistry, 1984, 53(1): 120-129
DOI URL |
[9] | SUN J, ZHOU J, HU Z, et al. Controllable sites and high-capacity immobilization of uranium in Nd2Zr2O7 pyrochlore. Journal of Synchrotron Radiation, 2022, 29: 37-44 |
[10] |
BELIN R C, VALENZA P J, RAISON P E, TILLARD M. Synthesis and Rietveld structure refinement of americium pyrochlore Am2Zr2O7. Journal of Alloys and Compounds, 2008, 448(1/2): 321-324.
DOI URL |
[11] |
KULKARNI N K, SAMPATH S, VENUGOPAL V. Preparation and characterisation of Pu-pyrochlore: [La1-xPux]2Zr2O7 (x=0-1). Journal of Nuclear Materials, 2000, 281(2/3): 248-250.
DOI URL |
[12] |
MANDAL B P, GARG N, SHARMA S M, et al. Solubility of ThO2 in Gd2Zr2O7 pyrochlore: XRD, SEM and Raman spectroscopic studies. Journal of Nuclear Materials, 2009, 392(1): 95-99.
DOI URL |
[13] |
KUTTY K V G, ASUVATHRAMAN R, MADHAVAN R R, et al. Actinide immobilization in crystalline matrix: a study of uranium incorporation in gadolinium zirconate. Journal of Physics and Chemistry of Solids, 2005, 66(2/3/4): 596-601.
DOI URL |
[14] |
TANG Z, HUANG Z Y, HAN W, et al. Uranium-incorporated pyrochlore La2(UxMgxZr1-2x)2O7 nuclear waste form: structure and phase stability. Inorganic Chemistry, 2020, 59(14): 9919-9926.
DOI URL |
[15] |
LIAN J, CHEN J, WANG L M, et al. Radiation-induced amorphization of rare-earth titanate pyrochlores. Physical Review B, 2003, 68(1): 134107.
DOI URL |
[16] | WANG S X, LUMPKIN G R, WANG L M, et al. Ion irradiation- induced amorphization of six zirconolite compositions. Nuclear Instruments and Methods in Physics Research Section B, 2000, 166-167(2): 293-298. |
[17] |
NÄSTREN C, JARDIN R, SOMERS J, et al. Actinide incorporation in a zirconia based pyrochlore (Nd1.8An0.2)Zr2O7+x (An=Th, U, Np, Pu, Am). Journal of Solid State Chemistry, 2009, 182(1): 1-7.
DOI URL |
[18] |
THAKUR A, SINGH B, KRISHNANI P D. In-core fuel management for AHWR. Annals of Nuclear Energy, 2013, 57: 47-58.
DOI URL |
[19] | DAI Z M. Thorium molten salt reactor nuclear energy system (TMSR). Molten Salt Reactors and Thorium Energy, 2017, 17: 531-540. |
[20] |
WANG L L, LI J B, XIE H, et al. Solubility, structure transition and chemical durability of Th-doped Nd2Zr2O7 pyrochlore. Progress in Nuclear Energy, 2021, 137: 103774.
DOI URL |
[21] |
TOBY B H, EXPGUI. A graphical user interface for GSAS. Journal of Applied Crystallography, 2001, 34: 210-213.
DOI URL |
[22] | ASTM. Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste. Annual Book of ASTM Standards. C1220-92. 1992, 12(1): 681-695. |
[23] |
STRACHAN D M. Results from long-term use of the MCC-1 static leach test method. Nuclear and Chemical Waste Management, 1983, 4(2): 177-188.
DOI URL |
[24] |
MANDAL B P, KRISHNA P S R, TYAGI A K. Order-disorder transition in the Nd2-yYyZr2O7 system: Probed by X-ray diffraction and Raman spectroscopy. Journal of Solid State Chemistry, 2010, 183(1): 41-45.
DOI URL |
[25] |
QU Z, WAN C, PAN W. Thermal expansion and defect chemistry of MgO-doped Sm2Zr2O7. Chemistry of Materials, 2007, 19(20): 4913.
DOI URL |
[26] |
VANDENBORRE M T, HUSSON E, CHATRY J P, et al. Rare- earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields. Journal of Raman Spectroscopy, 1983, 14: 63-71.
DOI URL |
[27] |
NANDI C, PHATAK R, KESARI S, et al. Phase evolution in [Nd1-xUx]2Zr2O7+δ system in oxidizing and reducing conditions: a nuclear waste form. Journal of Nuclear Materials, 2021, 556(1): 153208.
DOI URL |
[28] | HAYAKAWA I, KAMIZONO H. Durability of an La2Zr2O7 waste form in water. Journal of Nuclear Materials, 1993, 28: 513-517. |
[29] |
WEBER W J, NAVROTSKY A, STEFANOVSKY S, et al. Materials science of high-level nuclear waste immobilization. MRS Bulletin, 2009, 34: 46-53.
DOI URL |
[30] |
GONG B W, YANG K, LIAN J A, et al. Machine learning- enabled prediction of chemical durability of A2B2O7 pyrochlore and fluorite. Computational Materials Science, 2021, 200: 110820.
DOI URL |
[31] |
FENG Z Q, XIE H, WANG L L, et al. Glass-ceramics with internally crystallized pyrochlore for the immobilization of uranium wastes. Ceramics International, 2019, 45(14): 16999-17005.
DOI URL |
[1] | ZENG Jianjun, ZHANG Kuibao, CHEN Daimeng, GUO Haiyan, DENG Ting, LIU Kui. Preparation of (La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7 High-entropy Transparent Ceramics by Vacuum Sintering [J]. Journal of Inorganic Materials, 2021, 36(4): 418-424. |
[2] | Ya-Ping SUN, Hong-Long WANG, Jian CHU, Xu WANG, She-Qi PAN, Ming ZHANG. Leaching Behavior and Mechanism of Ceramic Waste Forms [J]. Journal of Inorganic Materials, 2019, 34(5): 461-468. |
[3] | WANG Lie-Lin, XIE Hua, CHEN Qing-Yun, WANG Qian, LONG Yong, DENG Chao, ZHANG Ke-Xin. Synthesis and Characterization of Thorium-doped Nd2Zr2O7 Pyrochlore [J]. Journal of Inorganic Materials, 2015, 30(1): 81-86. |
[4] | JIANG Jin-Long, WANG Qiong, HUANG Hao, ZHANG Xia, WANG Yu-Bao, GENG Qing-Fen. Microstructure Evolution Induced by Ultraviolet Light Irradiation in Ti-Si Codoped Diamond-like Carbon films [J]. Journal of Inorganic Materials, 2014, 29(9): 941-946. |
[5] | DING Juan, LIU Rui-Heng, GU Hui, CHEN Li-Dong. Study on the High Temperature Stability of YbyCo4Sb12/Yb2O3 Composite Thermoelctric Material [J]. Journal of Inorganic Materials, 2014, 29(2): 209-214. |
[6] | CHEN Pei-Rong, JI You-Zhang, YANG Qing. Preparation of Composite Additives Powder by Coprecipitation Method and Investgation of ZnO Varistor Ceramics [J]. Journal of Inorganic Materials, 2012, 27(12): 1277-1282. |
[7] | HE Ming,GU Xiao-Li,LUO Zhen-Yang,LU Xiao-Hua,FENG Xin. Hydrothermal Synthesis of Polymorphic Titania and their Structural Evolution from Potassium Titanate Whisker [J]. Journal of Inorganic Materials, 2008, 23(4): 662-668. |
[8] | WANG Xiu-Quan,CHEN Qi,SONG Li,LI Hui-Ping,LU Jian-Ying. WANG Xiu-Quan, CHEN Qi, SONG Li, LI Hui-Ping, LU Jian-Ying [J]. Journal of Inorganic Materials, 2006, 21(1): 181-186. |
[9] | HUANG Wen-Hai,ZHOU Nai,DAY Delbcrt E,RAY Chandra S. Effect of Cr2O3 on the HLW Iron Phosphate Glass Wasteforms [J]. Journal of Inorganic Materials, 2005, 20(4): 842-850. |
[10] | HU Ming-Zhe,ZHOU Dong-Xiang,JIANG Sheng-Lin,CAI Xue-Qing,HUANG Jing. Dielectric Properties of [(PbCa)Nd](FeNb)O3 Microwave Ceramics [J]. Journal of Inorganic Materials, 2005, 20(1): 126-132. |
[11] | YANG Qiu-Hong,KIM Eung-Soo,XU Jun. Effect of A-site Substitution by Nd~3+ on the Microwave Dielectric Properties of (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 Ceramics [J]. Journal of Inorganic Materials, 2003, 18(5): 1051-1056. |
[12] | WEI Jian-Zhong,CHEN Ren-Chang,ZHANG Liang-Ying,YAO Xi. Effects of Ag-Dopant on Dielectric Properties and Melting Behaviors of Bi2O3-ZnO-Nb2O5 (BZN)-Based Ceramics [J]. Journal of Inorganic Materials, 2001, 16(2): 319-323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||