Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 592-600.DOI: 10.15541/jim20200266
Special Issue: 【能源环境】金属有机框架材料(202309)
• REVIEW • Previous Articles Next Articles
LI Tingting1,2(), ZHANG Zhiming1, HAN Zhengbo2(
)
Received:
2020-05-15
Revised:
2020-07-09
Published:
2021-06-20
Online:
2020-08-28
Contact:
HAN Zhengbo, professor. E-mail: ceshzb@lnu.edu.cn
About author:
LI Tingting(1980-), female, PhD. E-mail: litingting2046@163.com
Supported by:
CLC Number:
LI Tingting, ZHANG Zhiming, HAN Zhengbo. Research Progress in Polymer-based Metal-organic Framework Nanofibrous Membranes Based on Electrospinning[J]. Journal of Inorganic Materials, 2021, 36(6): 592-600.
Fig. 3 (a) Preparation method and formation mechanism of the in situ ZIF-8/PAN fibers[22]; (b) Scheme of in situ growth of UiO-66-NH2 on PAN NFM[23]; (c) Fabrication process of ZIF-8, MIL-88B(Fe), HKUST-1 and MIL-53(Al) NFMs[25]
Fig. 7 (a) CO2 adsorption isotherms and CO2/N2 adsorption selectivity of PAN/ZIF-8 NFMs[33], (b) selective adsorption of cationic dyes by bio-MOF/PAN filter[37], and (c) adsorption mechanism of Cu(II) and Cr(VI) on the ZIF-67/CA NFM surface[39]
Fig. 8 (a) Possible mechanism of photocatalytic degradation of MB on PLA/ZIF-8@GO fibers[41], and (b) illustration of UiO-66-NH2 NFM used for protection against toxic industrial chemicals and chemical warfare agents[42]
Fig. 10 (a) Proton conductive process of oriented electrospun nanofiber and HRTEM image of cross-sectional aligned nanofiber[55], and (b) antibacterial activities of CS-PEO and CS-PEO-3% ZIF-8 NFMs[56]
[1] |
KALAJ M, BENTZ K C, AYALA JR S, et al. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chemical Reviews, 2020,120(16):8267-8302.
DOI URL |
[2] |
ZHANG Y, YUN S, FENG X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. Journal of the American Chemical Society, 2016,138(18):5785-5788.
DOI URL |
[3] |
ZHAO J, LEE D T, YAGA R W, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs. Angewandte Chemie International Edition, 2016,55(42):13224-13228.
DOI URL |
[4] | ZHANG Y, GUAN J, WANG X, et al. Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture. ACS Applied Materials & Interfaces, 2017,9(46):41087-41098. |
[5] |
WANG C, LIU C, LI J, et al. Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chemical Communications, 2017,53(10):1751-1754.
DOI URL |
[6] | ZHANG Y, ZHANG Y, WANG X, et al. Ultrahigh metal-organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability. ACS Applied Materials & Interfaces, 2018,10(40):34802-34810. |
[7] | GIBSON P, SCHREUDER-GIBSON H, RIVIN D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188:469-481. |
[8] |
CENTRON A, YANGA Y, SPEAKMAN S, et al. Growth of metal-organic frameworks on polymer surfaces. Journal of the American Chemical Society, 2010,132(44):15687-15691.
DOI URL |
[9] |
OSTERMANN R, CRAVILLON J, WEIDMANN C, et al. Metal- organic framework nanofibers via electrospinning. Chemical Communications, 2011,47(1):442-444.
DOI URL |
[10] |
LAURILA E, THUNBERG J, ARGENT S P, et al. Enhanced synthesis of metal-organic frameworks on the surface of electrospun cellulose nanofibers. Advanced Engineering Materials, 2015,17(9):1282-1286.
DOI URL |
[11] |
ROSE M, BOHRINGER B, JOLLY M, et al. MOF processing by electrospinning for functional textiles. Advanced Engineering Materials, 2011,13(4):356-360.
DOI URL |
[12] |
LIAN Z, HUIMIN L, ZHAOFEI O. In situ crystal growth of zeolitic imidazolate frameworks (ZIF) on electrospun polyurethane nanofibers. Dalton Transactions, 2014,43(18):6684-6688.
DOI URL |
[13] |
ARMSTRONG M R, SHAN B, MARINGANTI S V, et al. Hierarchical pore structures and high ZIF-8 loading on matrimid electrospun fibers by additive removal from a blended polymer precursor. Industrial & Engineering Chemistry Research, 2016,55(37):9944-9951.
DOI URL |
[14] | AN S, LEE J S, JOSHI B N, et al. Freestanding fiber mats of zeolitic imidazolate framework 7 via one-step, scalable electrospinning. Journal of Applied Polymer Science, 2016,133(32):43788. |
[15] |
ISMAIL F M, ABDELLAH A M, ALI P A, et al. Bilayer sandwich-like membranes of metal organic frameworks electrospun polymeric nanofibers via SiO2 nanoparticles seeding. Materials Today Communications, 2017,12:119-124.
DOI URL |
[16] | HAO Z, WU J, WANG C, et al. Electrospun polyimide/metal- organic framework nanofibrous membrane with superior thermal stability for efficient PM2.5 capture. ACS Applied Materials & Interfaces, 2019,11(12):11904-11909. |
[17] | EFOME J E, RANA D, MATSUURA T, et al. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Applied Materials & Interfaces, 2018,10(22):18619-18629. |
[18] |
EFOME J E, RANA D, MATSUURA T, et al. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chemical Engineering Journal, 2018,352:737-744.
DOI URL |
[19] |
EFOME J E, RANA D, MATSUURA T, et al. Metal-organic frameworks supported on nanofibers to remove heavy metals. Journal of Materials Chemistry A, 2018,6(10):4550-4555.
DOI URL |
[20] | SHOOTO N D, WANKASI D, SIKHWVHILU C, et al. Novel super adsorbents (PVA and PVA/Cu-MOF nanofibres) as effective lead ions remover in aqueous solution. Dig. J. Nanomater. Biostruct., 2016,11:425-434. |
[21] |
SHOOTO N D, DIKIO C W, WANKASI D, et al. Novel PVA/MOF nanofibres: fabrication, evaluation and adsorption of lead ions from aqueous solution. Nanoscale Research Letters, 2016,11(1):1-13.
DOI URL |
[22] | WANG C, ZHENG T, LUO R, et al. In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. ACS Applied Materials & Interfaces, 2018,10(28):24164-24171. |
[23] |
LU A X, PLOSKONKA A M, TOVAR T M, et al. Direct surface growth of UIO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Industrial & Engineering Chemistry Research, 2017,56(49):14502-14506.
DOI URL |
[24] |
LI Z, ZHOU G, DAI H, et al. Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal-organic frameworks grown on silk nanofibers for hazard collection in water. Journal of Materials Chemistry A, 2018,6(8):3402-3413.
DOI URL |
[25] | LIU C, WU Y N, MORLAY C, et al. General deposition of metal-organic frameworks on highly adaptive organic-inorganic hybrid electrospun fibrous substrates. ACS Applied Materials & Interfaces, 2016,8(4):2552-2561. |
[26] |
GAO M, ZENG L, NIE J, et al. Polymer-metal-organic framework core-shell framework nanofibers via electrospinning and their gas adsorption activities. RSC Advances, 2016,6(9):7078-7085.
DOI URL |
[27] |
WU Y N, LI F, LIU H, et al. Electrospun fibrous mats as skeletons to produce free-standing MOF[ membranes. Journal of Materials Chemistry, 2012,22(33):16971-16978.
DOI URL |
[28] |
BECHELANY M, DROBEK M, VALLICARI C, et al. Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale, 2015,7(13):5794-5802.
DOI URL |
[29] | DWYER D B, LEE D T, BOYER S, et al. Toxic organophosphate hydrolysis using nanofiber-templated UIO-66-NH2 metal-organic framework polycrystalline cylinders. ACS Applied Materials & Interfaces, 2018,10(30):25794-25803. |
[30] |
ZHOU M, LI J, ZHANG M, et al. A polydopamine layer as the nucleation center of MOF deposition on “inert” polymer surfaces to fabricate hierarchically structured porous films. Chemical Communications, 2015,51(13):2706-2709.
DOI URL |
[31] |
FAN L, XUE M, KANG Z, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. Journal of Materials Chemistry, 2012,22(48):25272-25276.
DOI URL |
[32] |
ARMSTRONG M, SIROU P, SHAN B, et al. Prolonged HKUST-1 functionality under extreme hydrothermal conditions by electrospinning polystyrene fibers as a new coating method. Microporous and Mesoporous Materials, 2018,270:34-39.
DOI URL |
[33] |
CHOI C, KADAM R L, GAILWAD S, et al. Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO2 capture. Microporous and Mesoporous Materials, 2020,296:110006.
DOI URL |
[34] |
FAN X, YU L, LI L, et al. Characterization and application of zeolitic imidazolate framework-8@polyvinyl alcohol nanofibers mats prepared by electrospinning. Materials Research Express, 2017,4(2):026404.
DOI URL |
[35] |
ZHAN Y, GUAN X, REN E, et al. Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofibrous mats for dye removal. Journal of Polymer Research, 2019,26(6):145.
DOI URL |
[36] |
ZHAO R, TIAN Y, LI S, et al. An electrospun fiber based metal-organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water. Journal of Materials Chemistry A, 2019,7(39):22559-22570.
DOI URL |
[37] | LI T, LIU L, ZHANG Z, et al. Preparation of nanofibrous metal-organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution. Separation and Purification Technology, 2020,237:116360. |
[38] |
JAMSHIDIFARD S, KOUSHKBAGHI S, HOSSEINI S, et al. Incorporation of UIO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. Journal of Hazardous Materials, 2019,368:10-20.
DOI URL |
[39] | HOU X, ZHOU H, ZHANG J, et al. High adsorption pearl-necklace-like composite membrane based on metal-organic framework for heavy metal ion removal. Particle & Particle Systems Characterization, 2018,35(6):1700438. |
[40] |
LEUS K, KRISHNARAJ C, VERHOEVEN L, et al. Catalytic carpets: Pt@MIL-101@electrospun PCL, a surprisingly active and robust hydrogenation catalyst. Journal of Catalysis, 2018,360:81-88.
DOI URL |
[41] |
DAI X, LI X, ZHANG M, et al. Zeolitic imidazole framework/ graphene oxide hybrid functionalized poly (lactic acid) electrospun membranes: A promising environmentally friendly water treatment material. ACS Omega, 2018,3(6):6860-6866.
DOI URL |
[42] | LU A X, MCENTEE M, BROWE M A, et al. Mofabric: electrospun nanofiber mats from PVDF/UIO-66-NH2 for chemical protection and decontamination. ACS Applied Materials & Interfaces, 2017,9(15):13632-13636. |
[43] | PETERSON G W, LU A X, EPPS T H. Tuning the morphology and activity of electrospun polystyrene/UIO-66-NH2 metal-organic framework composites to enhance chemical warfare agent removal. ACS Applied Materials & Interfaces, 2017,9(37):32248-32254. |
[44] |
MCCARTHY D L, LIU J, DWYER D B, et al. Electrospun metal-organic framework polymer composites for the catalytic degradation of methyl paraoxon. New Journal of Chemistry, 2017,41(17):8748-8753.
DOI URL |
[45] |
XU Y, WEN Y, ZHU W, et al. Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives. Materials Letters, 2012,87:20-23.
DOI URL |
[46] |
SHANGGUAN J, BAI L, LI Y, et al. Layer-by-layer decoration of nofs on electrospun nanofibers. RSC Advances, 2018,8(19):10509-10515.
DOI URL |
[47] |
LI T T, LIU L, GAO M L, et al. A highly stable nanofibrous Eu-MOF membrane as a convenient fluorescent test paper for rapid and cyclic detection of nitrobenzene. Chemical Communications, 2019,55(34):4941-4944.
DOI URL |
[48] |
ASIABI M, MEHDINIA A, JABBARI A. Preparation of water stable methyl-modified metal-organic framework-5/polyacrylonitrile composite nanofibers via electrospinning and their application for solid-phase extraction of two estrogenic drugs in urine samples. Journal of Chromatography A, 2015,1426:24-32.
DOI URL |
[49] |
ASIABI M, MEHDINIA A, JABBARI A. Electrospun biocompatible chitosan/MIL-101 (Fe) composite nanofibers for solid-phase extraction of Δ9-tetrahydrocannabinol in whole blood samples using box-behnken experimental design. Journal of Chromatography A, 2017,1479:71-80.
DOI URL |
[50] |
LIU F, XU H. Development of a novel polystyrene/metal-organic framework-199 electrospun nanofiber adsorbent for thin film microextraction of aldehydes in human urine. Talanta, 2017,162:261-267.
DOI URL |
[51] |
MEHRAFZA N, SARAZI M. Electrospun polyacrylonitrile-zeolite imidazolate framework-8 nanofibers for the thin-film microextraction of bisphenol A. Separation Science Plus, 2018,1(5):382-388.
DOI URL |
[52] |
YAN Z, WU M, HU B, et al. Electrospun UIO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. Journal of Chromatography A, 2018,1542:19-27.
DOI URL |
[53] |
ARABORKHI B, SERESHTI H, ABBASI A. Electrospun metal-organic framework/polyacrylonitrile composite nanofibrous mat as a microsorbent for the extraction of tetracycline residue in human blood plasma. Journal of Separation Science, 2019,42(8):1500-1508.
DOI URL |
[54] | YANG F, EFOME J E, RANA D, et al. Metal-organic frameworks supported on nanofiber for desalination by direct contact membrane distillation. ACS Applied Materials & Interfaces, 2018,10(13):11251-11260. |
[55] |
WU B, PAN J, GE L, et al. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Scientific Reports, 2014,4:4334.
DOI URL |
[56] |
KOHSARI I, SHARIATINIA Z, POURMORTAZAVI S M. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. International Journal of Biological Macromolecules, 2016,91:778-788.
DOI URL |
[57] |
SINGBUMRUNG K, MOTINA K, PISITSAK P, et al. Preparation of Cu-BTC/PVA fibers with antibacterial applications. Fibers and Polymers, 2018,19(7):1373-1378.
DOI URL |
[58] |
GUO Y, CAO Y, CHEN Z, et al. Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy, 2020,70:104517.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||