Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (7): 694-702.DOI: 10.15541/jim20180512
Special Issue: 离子电池材料
Previous Articles Next Articles
LI Dong1,2,LEI Chao1,2,LAI Hua3,LIU Xiao-Lin1,2,YAO Wen-Li1,2,LIANG Tong-Xiang1,ZHONG Sheng-Wen1,2
Received:
2018-10-31
Revised:
2019-01-15
Published:
2019-07-20
Online:
2019-06-26
Supported by:
CLC Number:
LI Dong, LEI Chao, LAI Hua, LIU Xiao-Lin, YAO Wen-Li, LIANG Tong-Xiang, ZHONG Sheng-Wen. Recent Advancements in Interface between Cathode and Garnet Solid Electrolyte for All Solid State Li-ion Batteries[J]. Journal of Inorganic Materials, 2019, 34(7): 694-702.
Fig. 2 Driving force for interphase formation between electrolyte, and cathode, with varying voltage from 0 to 5 V vs lithium metal [Legend: blue, LCO; red, LMO; green, LFP; thick line, LLZO; thin line, LLTO]. The calculated intrinsic stability windows are marked along the bottom for reference[50]
Fig. 3 (a) Typical scanning electron microscope (SEM) image of the interface between composite cathodes and LLZTO electrolyte; (b) SEM image for the surface of LLZTO ceramic; SEM images of the composite cathodes which were measured in (c) the second-electron and (d) the back-scatter-electron mode[53]
Fig. 4 Schematic illustration of the synthesis procedure[57] (a) Microscale LLZO particles; (b) Nanoscale LLZO particles; (c) Nanoscale LLZO slurry; (d) Cathode layer of LFP; (e) LLZO film; (f) All-solid-state battery of Li/LLZO/LFP
Fig. 5 (a) Schematic illustrations of non-modified and Nb-modified LLZ/LiCoO2 interfaces. The mutual diffusion between LLZO and LiCoO2 produces non-Li+-conductive phases such as a crystalline La2CoO4 phase. Nb-modified LLZ/LiCoO2 interface suppresses the mutual diffusion and produce Li+-conductive amorphous phase; (b) Cross-sectional-HAADF-STEM image of a Nb-modified interface between LLZO and LiCoO2[65]. EDX elemental mappings in (b) for Co (red), Nb (purple), and La (green) are overlaid in the dashed-line-enclosed region. The top Pt is a protective layer for FIB processes
Electrolyte | Ion-conductivity/ (mS·cm-1) | Cathode materials | Interface Engineering | Test condition | Discharge capacity /(mAh·g-1) | Ref. |
---|---|---|---|---|---|---|
Li6.20Ga0.30La2.95Rb0.05Zr2O12 | 1.62 | LiFePO4 | Coating | 60 ℃, 5 μA·cm-2 2.8-4.0 V | 152(1st), 110(20th) | [24] |
Li6.4La3Zr1.4Ta0.6O12 | 1.60 | LiFePO4 | Coating | 60 ℃, 0.05C 2.76-4.00 V | 150(1st), 140(100th) | [53] |
Li7La3Zr2O12 | 2.40 | LiFePO4 | Coating | 25 ℃ 0.1C | 160.4 (1st), 136.8 (100th) | [57] |
Li6.75La3Zr1.75Nb0.25O12 | 1.67 | LiCoO2 | PLD | 25 ℃, 3.5 μA·cm-2 2.5-4.2 V | 129 (1st), 127(100th) | [61] |
Li6.8(La2.95Ca0.05)(Zr1.75Nb0.25)O12 | 0.36 | LiCoO2 | Co-sintering | 1 μA·g-1, 3.0-4.2 V | 78(1st) | [47] |
Li7La3Zr2O12 (1.7wt% Al, 0.1wt% Si) | 0.68 | LiCoO2 | PLD | 1 mA·cm-2, 3.2-4.2 V | 80 (1st) | [65] |
Li6.75La3Zr1.75Nb0.25O12 | 1.23 | LiCoO2 | Screen-printing | 25 ℃, 10 μA·cm-2 3.00-4.05 V | 85(1st) | [64] |
Li6.75La3Zr1.75Ta0.25O12 | ~1.00 | LiCoO2 | Coating+ co-sintering | 5 μA·cm-2 | 101.3(1st) | [54] |
Li6.75La3Zr1.75Ta0.25O12 | 0.74 | LiNi0.5Co0.2Mn0.3O2 | Tape casting | 80 ℃, 5 μA·cm-2 3.0-4.6 V | 123.3 (1st), 76.6 (5th) | [56] |
Li6.25Al0.25La3Zr2O12 | 0.50 | Li4Ti5O12 | Coating | 95 ℃, 2-8 μA·g-1 1.0-2.5 V | 15(1st) | [81] |
Table 1 Performances of ASSLBs based on garnet-type Li7La3Zr2O12 solid electrolytes
Electrolyte | Ion-conductivity/ (mS·cm-1) | Cathode materials | Interface Engineering | Test condition | Discharge capacity /(mAh·g-1) | Ref. |
---|---|---|---|---|---|---|
Li6.20Ga0.30La2.95Rb0.05Zr2O12 | 1.62 | LiFePO4 | Coating | 60 ℃, 5 μA·cm-2 2.8-4.0 V | 152(1st), 110(20th) | [24] |
Li6.4La3Zr1.4Ta0.6O12 | 1.60 | LiFePO4 | Coating | 60 ℃, 0.05C 2.76-4.00 V | 150(1st), 140(100th) | [53] |
Li7La3Zr2O12 | 2.40 | LiFePO4 | Coating | 25 ℃ 0.1C | 160.4 (1st), 136.8 (100th) | [57] |
Li6.75La3Zr1.75Nb0.25O12 | 1.67 | LiCoO2 | PLD | 25 ℃, 3.5 μA·cm-2 2.5-4.2 V | 129 (1st), 127(100th) | [61] |
Li6.8(La2.95Ca0.05)(Zr1.75Nb0.25)O12 | 0.36 | LiCoO2 | Co-sintering | 1 μA·g-1, 3.0-4.2 V | 78(1st) | [47] |
Li7La3Zr2O12 (1.7wt% Al, 0.1wt% Si) | 0.68 | LiCoO2 | PLD | 1 mA·cm-2, 3.2-4.2 V | 80 (1st) | [65] |
Li6.75La3Zr1.75Nb0.25O12 | 1.23 | LiCoO2 | Screen-printing | 25 ℃, 10 μA·cm-2 3.00-4.05 V | 85(1st) | [64] |
Li6.75La3Zr1.75Ta0.25O12 | ~1.00 | LiCoO2 | Coating+ co-sintering | 5 μA·cm-2 | 101.3(1st) | [54] |
Li6.75La3Zr1.75Ta0.25O12 | 0.74 | LiNi0.5Co0.2Mn0.3O2 | Tape casting | 80 ℃, 5 μA·cm-2 3.0-4.6 V | 123.3 (1st), 76.6 (5th) | [56] |
Li6.25Al0.25La3Zr2O12 | 0.50 | Li4Ti5O12 | Coating | 95 ℃, 2-8 μA·g-1 1.0-2.5 V | 15(1st) | [81] |
[1] | QIU Z P, ZHANG Y J, XIA S B , et al. Research progress on interface properties of inorganic solid state lithium ion batteries. Acta Chim.Sinica, 2015,73(10):992-1001. |
[2] | XU X X, LI H . A review of solid-state lithium batteries. Energ. Stor. Sci. Technol., 2018,7(1):1-7. |
[3] |
KIM J G, SON B, MUKHERJEE S , et al. A review of lithium and non-lithium based solid state batteries.[J]. Power Sources, 2015,282:299-322.
DOI URL |
[4] |
MAUGER A, ARMAND M, JULIEN C M , et al. Challenges and issues facing lithium metal for solid-state rechargeable batteries.[J]. Power Sources, 2017,353:333-342.
DOI URL |
[5] |
SUN C, LIU J, GONG Y , et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy, 2017,33:363-386.
DOI URL |
[6] |
TAKADA K . Progress and prospective of solid-state lithium batteries. Acta Mater., 2013,61(3):759-770.
DOI URL |
[7] |
MEESALA Y, JENA A, CHANG H , et al. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett., 2017,2(12):2734-2751.
DOI URL |
[8] |
KERMAN K, LUNTZ A, VISWANATHAN V , et al. Review- practical challenges hindering the development of solid state Li ion batteries.[J]. Electrochem. Soc., 2017,164(7):A1731-A1744.
DOI URL |
[9] | CHEN L, CHI S S, DONG Y , et al. Research progress of key materials for all-solid-state lithium batteries.[J]. Chin. Ceram. Soc., 2018,46(1):21-34. |
[10] |
KAZUNORI TAKADA . Progress in solid electrolytes toward realizing solid-state lithium batteries.[J]. Power Sources, 2018,394:74-85.
DOI URL |
[11] |
CHENG J, LI H, WANG C . Recent progress in solid-state electrolytes for alkali-ion batteries. Sci. Bull., 2017,62(21):1473-1490.
DOI URL |
[12] |
ZHENG F, KOTOBUKI M, SONG S , et al. Review on solid electrolytes for all-solid-state lithium-ion batteries.[J]. Power Sources, 2018,389:198-213.
DOI URL |
[13] |
ZHU Y, HE X, MO Y . Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces, , 2015,7(42):23685-23693.
DOI URL |
[14] | ZHONG S W, HUANG B . Effects of excess lithium salt on properties of perovskite-type solid electrolyte Li3/8Sr7/16Ta3/4Hf1/4O3. Nonferr. Metal. Sci. Eng., 2017,8(1):70-74. |
[15] | XU C, LUO J B, PENG W W , et al. SPS sintering and properties of NASICON type solid electrolyte Li1.1Y0.1Zr1.9(PO4)3. Nonferr. Metal. Sci. Eng., 2018,9(1):66-70. |
[16] | LUO J B, LI T T, YOU W X , et al. Preparation of Li3/8Sr7/16Ta3/4Hf1/4O3 perovskite solid electrolyte by hot pressing sintering. Nonferr. Metal. Sci. Eng., 2018,9(4):66-69. |
[17] |
BACHMAN J C, MUY S, GRIMAUD A , et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev., 2016,116(1):140-162.
DOI URL |
[18] | LIN Z J, HE X M, LI J J , et al. Recent advances of all solid state polymer electrolyte for Li-ion batteries. Prog. Chem., 2006,18(4):459-466. |
[19] |
RICHARDS W D, MIARA L J, WANG Y , et al. Interface stability in solid-state batteries. Chem. Mater., 2016,28:266-273.
DOI URL |
[20] |
DUAN H, ZHENG H, ZHOU Y , et al. Stability of garnet-type Li ion conductors: an overview. Solid State Ionics, 2018,318:45-53.
DOI URL |
[21] |
CHAN C K, YANG T, WELLER J M . Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries. Electrochim. Acta, 2017,253:268-280.
DOI URL |
[22] |
RAMAKUMAR S, DEVIANNAPOORANI C, DHIVYA L , et al. Lithium garnets: synthesis, structure, Li +, conductivity, Li +, dynamics and applications . Prog. Mater. Sci., 2017,88:325-411.
DOI URL |
[23] |
LIU Q, GENG Z, HAN C , et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries.[J]. Power Sources, 2018,389:120-134.
DOI URL |
[24] |
WU J F, PANG W K, PETERSON V K , et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl. Mater. Interfaces, 2017,9(14):12461-12468.
DOI URL |
[25] | HAN X, GONG Y, FU K K , et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 2017,16(5):572-579. |
[26] |
FU K K, GONG Y, LIU B , et al. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv., 2017,3(4):e1601659.
DOI URL |
[27] | WANG C, GONG Y, LIU B , et al. Conformal, nanoscale ZnO surface modification of garnet-based solid state electrolyte for lithium metal anodes. Nano Lett., 2016,17(1):565-571. |
[28] |
TIAN Y, DING F, ZHONG H , et al. Li6.75La3Zr1.75Ta0.25O12 @amorphous Li3OCl composite electrolyte for solid state lithium- metal batteries. Energy Storage Mater., 2018,14:49-57.
DOI URL |
[29] | GAO Z H, SUN H B, FU L , et al. Promises, challenges,recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater., 2018, 30(17): 1705702-1-27. |
[30] |
ZHENG B, WANG H, MA J, GONG Z, YANG Y . A review of inorganic solid electrolyte/electrode interface in all-solid-state lithium batteries. Sci. Sin. Chim., 2017,47(5):579-593.
DOI URL |
[31] |
YU S, SCHMIDT R D, GARCIA-MENDEZ R , et al. Elastic properties of the solid electrolyte Li7La3Zr2O12( LLZO). Chem. Mater., 2016,28(1):197-206.
DOI URL |
[32] |
ZHAN X, LAI S, GOBET M P , et al. Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12. Phys. Chem. Chem. Phys., 2018,20(3):1447-1459.
DOI URL |
[33] |
LIU T, ZHANG Y, CHEN R , et al. Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact. Electrochem. Commun., 2017,79:1-4.
DOI URL |
[34] |
YAMADA H, ITO T, HONGAHALLY BASAPPA R , et al. Influence of strain on local structure and lithium ionic conduction in garnet-type solid electrolyte.[J]. Power Sources, 2017,368:97-106.
DOI URL |
[35] |
BUCCI G, SWAMY T, CHIANG Y M , et al. Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J. Mater. Chem. A, 2017,5(36):19422-19430.
DOI URL |
[36] |
CHENG L, CRUMLIN E J, CHEN W , et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys. Chem. Chem. Phys., 2014,16(34):18294-18300.
DOI URL |
[37] |
CHENG L, WU C H, JARRY A , et al. Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl. Mater. Interfaces, 2015,7(32):17649-19655.
DOI URL |
[38] |
SHARAFI A . Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A, 2017,5(26):13475-13487.
DOI URL |
[39] |
AHN C W, CHOI J J, RYU J , et al. Electrochemical properties of Li7La3Zr2O12-based solid state battery.[J]. Power Sources, 2014,272:554-558.
DOI URL |
[40] |
XIA W, XU B, DUAN H , et al. Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2.[J]. Am. Ceram. Soc., 2017,100:2832-2839.
DOI URL |
[41] |
KANG S G, SHOLL D S . First-principles study of chemical stability of the lithium oxide garnets Li7La3M2O12 (M=Zr, Sn, or Hf). J. Phys. Chem. C, 2014,118(31):17402-17406.
DOI URL |
[42] |
HOFSTETTER K, SAMSON A J, NARAYANAN S , et al. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium.[J]. Power Sources, 2018,390:297-312.
DOI URL |
[43] |
JIN Y, MCGINN P J . Li7La3Zr2O12, electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery.[J]. Power Sources, 2013,239(10):326-331.
DOI URL |
[44] |
WANG Y X, LAI W . Phase transition in lithium garnet oxide ionic conductors Li7La3Zr2O12: the role of Ta substitution and H2O/CO2 exposure.[J]. Power Sources, 2015,275:612-620.
DOI URL |
[45] |
TIAN Y, SHI T, RICHARDS W D , et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci., 2017,10:1150-1166.
DOI URL |
[46] |
KIM K H, IRIYAMA Y, YAMAMOTO K , et al. Characterization of the interface between LiCoO2, and Li7La3Zr2O12, in an all-solid-state rechargeable lithium battery.[J]. Power Sources, 2011,196(2):764-767.
DOI URL |
[47] |
OHTA S, SEKI J, YAGI Y , et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery.[J]. Power Sources, 2014,265:40-44.
DOI URL |
[48] |
REN Y, LIU T, SHEN Y , et al. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12, and major commercial lithium battery cathode materials.[J]. Materiomics, 2016,2(3):256-264.
DOI URL |
[49] |
MIARA L, WINDMÜLLER A, TSAI C L , et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as function of temperature. ACS Appl. Mater. Interfaces, 2016,8(40):26842-26850.
DOI URL |
[50] |
MIARA L J, RICHARDS W D, WANG Y E , et al. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem. Mater., 2015,27(11):4040-4047.
DOI URL |
[51] |
HÄNSEL C, AFYON S, RUPP J L . Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode- LiMn1.5Ni0.5O4. Nanoscale, 2016,8(43):18412-18420.
DOI URL |
[52] |
PARK K, YU B C, JUNG J W , et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater., 2016,28(21):8051-8059.
DOI URL |
[53] |
DU F, ZHAO N, LI Y , et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes.[J]. Power Sources, 2015,300:24-28.
DOI URL |
[54] |
LIU T, REN Y, SHEN Y , et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12, electrolyte: interfacial resistance.[J]. Power Sources, 2016,324:349-357.
DOI URL |
[55] |
HE M, CUI Z, HAN F , et al. Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries.[J]. Alloys Compd., 2018,762:157-162.
DOI URL |
[56] |
LIU T, ZHANG Y, ZHANG X , et al. Enhanced electrochemical performance of bulk type oxide ceramic lithium battery enabled by interface modification. J. Mater. Chem. A, 2018,6:4649-4657.
DOI URL |
[57] |
YAN X F, LI Z B, WEN Z Y , et al. Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J. Phys. Chem. C, 2017,121(3):1431-1435.
DOI URL |
[58] |
WAKAYAMA H, YONEKURA H, KAWAI Y . Three-dimensional bicontinuous nanocomposite from a self-assembled block copolymer for a high-capacity all-solid-state lithium battery cathode. Chem. Mater., 2016,28(12):4453-4459.
DOI URL |
[59] |
WAKAYAMA H, KAWAI Y . Effect of LiCoO2/Li7La3Zr2O12 ratio on the structure and electrochemical properties of nanocomposite cathodes for all-solid-state lithium batteries. J. Mater. Chem. A, 2017,5:18816-18822.
DOI URL |
[60] | GAI J, ZHAO E, MA F , et al. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site.[J]. Eur. Ceram. Soc., 2017,38(4):1673-1678. |
[61] |
OHTA S, KOBAYASHI T, SEKI J , et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte.[J]. Power Sources, 2012,202(1):332-335.
DOI URL |
[62] |
KOTOBUKI M, MUNAKATA H, KANAMURA K , et al. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode.[J]. Electrochem. Soc., 2010,157(10):A1076-A1079.
DOI URL |
[63] |
LIU B, FU K, GONG Y , et al. Rapid thermal annealing of cathode- garnet interface toward high temperature solid state batteries. Nano Lett., 2017,17(8):4917-4923.
DOI URL |
[64] |
OHTA S, KOMAGATA S, SEKI J , et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3, solid electrolytes fabricated by screen-printing.[J]. Power Sources, 2013,238(28):53-56.
DOI URL |
[65] |
KATO T, HAMANAKA T, YAMAMOTO K , et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid- state battery.[J]. Power Sources, 2014,260(16):292-298.
DOI URL |
[66] |
OHTA N, TAKADA K, ZHANG L , et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater., 2006,18(17):2226-2229.
DOI URL |
[67] |
KITAURA H, HAYASHI A, TADANAGA K , et al. Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4, positive electrode. Solid State Ionics, 2011,192(1):304-307.
DOI URL |
[68] |
SAKUDA A, KITAURA H, HAYASHI A , et al. Improvement of high-rate performance of all-solid-state lithium secondary batteries using LiCoO2 coated with Li2O-SiO2 glasses. Electrochem. Solid-State Lett., 2008,11(1):A1-A3.
DOI URL |
[69] |
JIN Y, LI N, CHEN C H , et al. Electrochemical characterizations of commercial LiCoO2 powders with surface modified by Li3PO4 nanoparticles. Electrochem. Solid-State Lett., 2006,9(6):A273-A276.
DOI URL |
[70] |
LIU B, GONG Y, FU K , et al. Garnet solid electrolyte protected Li-metal batteries. ACS Appl. Mater. Interfaces, 2017,9(22):18809-18815.
DOI URL |
[71] |
ZHANG J, ZHAO N, ZHANG M , et al. Flexible and ion- conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016,28:447-454.
DOI URL |
[72] |
CHEN R J, ZHANG Y B, LIU T , et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all composite approach. ACS Appl. Mater. Interfaces, 2017,9(11):9654-9661.
DOI URL |
[73] |
ZHANG X, LIU T, ZHANG S , et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength and thermal stability of solid composite electrolytes. J. Am. Chem. Soc., 2017,139(39):13779-13785.
DOI URL |
[74] |
ZHANG W, NIE J, LI F , et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 2018,45:413-419.
DOI URL |
[75] |
YOSHIMA K, HARADA Y, TAKAMI N . Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12, for 12V-class bipolar batteries.[J]. Power Sources, 2016,302:283-290.
DOI URL |
[76] |
ZHANG J, ZANG X, WEN H , et al. High-voltage and free- standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A, 2017,5(10):4940-4948.
DOI URL |
[77] |
HUO H, SUN J, CHEN C , et al. Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries.[J]. Power Sources, 2018,383:150-156.
DOI URL |
[78] |
HUO H, ZHAO N, SUN J , et al. Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery.[J]. Power Sources, 2017,372:1-7.
DOI URL |
[79] |
WANG Z, WANG Z, YANG L , et al. Boosting Interfacial Li +, transport with a MOF-based ionic conductor for solid-state batteries . Nano Energy, 2018,49:580-587.
DOI URL |
[80] |
XU B, DUAN H, LIU H , et al. Stabilization of garnet/liquid electrolyte interface using superbase additives for hybrid Li batteries. ACS Appl. Mater. Interfaces, 2017,9(25):21077-21082.
DOI URL |
[81] | JAN V D B, AFYON S, RUPP J L M . Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li + conductors. Adv. Energy Mater., 2016, 6(19): 1600736-1-11. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||