Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (7): 685-693.DOI: 10.15541/jim20180515
Special Issue: 药物载体与防护材料
• REVIEW • Next Articles
LI Hao-Geng1,2,GU Hong-Yu1,ZHANG Yu-Zhi1,2(),SONG Li-Xin1,2(
),WU Ling-Nan1,QI Zhen-Yi1,ZHANG Tao1
Received:
2018-10-29
Revised:
2018-11-29
Published:
2019-07-20
Online:
2019-06-26
Supported by:
CLC Number:
LI Hao-Geng,GU Hong-Yu,ZHANG Yu-Zhi,SONG Li-Xin,WU Ling-Nan,QI Zhen-Yi,ZHANG Tao. Surface Protection of Polymer Materials from Atomic Oxygen: a Review[J]. Journal of Inorganic Materials, 2019, 34(7): 685-693.
Fig. 2 PI surface modification to form polyamic acid: NaOH hydrolysis of PI (Step 1) to form sodium salt of polyamic acid followed by acidification (Step 2) to form polyamic acid[50]
Fig. 3 SEM images of AO exposed (effective fluence ~2.0×1020atoms/cm2) samples: untreated samples[52,53] (a) masked section and (b) exposed section, images of ImplantoxTM treatment being (c) masked and (d) exposed sections, and AO exposed (e) Implantox-treated section and (f) untreated sections
Sample | F/(×1020 O atom?cm-2) | ΔM/mg | A/cm2 | (ΔM/A)/(mg?cm-2) | E/(×10-24, cm3atom-1) |
---|---|---|---|---|---|
Kapton | 3.09 | 5.03 | 3.14 | 1.60 | 3.65 |
SiOx coated PI | 3.09 | 0.17 | 3.14 | 0.05 | 0.12 |
Table 1 Erosion yield of atomic oxygen on PI samples[56]
Sample | F/(×1020 O atom?cm-2) | ΔM/mg | A/cm2 | (ΔM/A)/(mg?cm-2) | E/(×10-24, cm3atom-1) |
---|---|---|---|---|---|
Kapton | 3.09 | 5.03 | 3.14 | 1.60 | 3.65 |
SiOx coated PI | 3.09 | 0.17 | 3.14 | 0.05 | 0.12 |
Fig. 5 Initial (left, t=0) and final (right, t=35 ps) simulation snapshots of different PI protection system under AO impact[71]:PI-grafted (a) 15wt% POSS and (b) 30wt% POSS; 15wt% graphene (c) randomly oriented and (d) aligned
[1] |
DEVER J A, MILLER S K, SECHKAR E A , et al. Space environment exposure of polymer films on the materials international space station experiment: results from MISSE 1 and MISSE 2. High Perform. Polym., 2008,20(4/5):371-387.
DOI URL |
[2] | ZHANG W, YI M, SHEN Z G , et al. Protection against atomic oxygen erosion of oxide coatings for spacecraft materials. Journal of Beijing University of Aeronautics and Astronautics, 2013,39(8):1074-1078. |
[3] | LEI X F . Functional Polyimide/silicon Films: Fabrication and Properties. Xi’an: Northwestern Polytechnical University PhD thesis, 2016. |
[4] |
LIAW D J, WANG K L, HUANG Y C , et al. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci., 2012,37(7):907-974.
DOI URL |
[5] | XIONG Y Q, XIE S P . Measurement methods of atomic oxygen concentration. Journal of Transducer Technology, 1999,18(3):8-12. |
[6] |
SEMONIN D M, BRUNSVOLD A L, MINTON T K . Erosion of Kapton H® by hyperthermal atomic oxygen. J. Spacer. Rockets, 2006,43(2):421-425.
DOI URL |
[7] | SONG M M . Study on Erosion Effect of Atomic Oygen on Polyimide and Its Protective Technology in LEO Environment. Nanchang: Jiangxi Science and Technology Normal University Master Thesis, 2012. |
[8] | WANG C B . Study on the Degradation Behavior of Organic/Inorganic Protective Materials in Atomic Oxygen Environment. Changchun: Jilin University Master Thesis, 2017. |
[9] | SILVERMAN E M . NASA Contrator Report 4661, Part 1. Space Environmental Effects on Spacecraft: LEO Materials Selection Guide, part 1, N96-10860, Virginia: NASA, 1995. |
[10] |
TIAN C, CHENG L F, LUAN X G . Degradation behaviour of C/C composites by atomic oxygen irradiation. Journal of Inorganic Materials, 2013,28(8):853-858.
DOI URL |
[11] |
HOOSHANGI Z, FEGHHI S A H, SAEEDZADEH R . The effects of low earth orbit atomic oxygen on the properties of polytetraflu- oroethylene. Acta Astronaut., 2016,119:233-240.
DOI URL |
[12] |
DE GROH K K, BANKS B A . Atomic-oxygen undercutting of long duration exposure facility atomized-Kapton multilayer insulation. J. Spacer. Rockets, 1994,31(4):656-664.
DOI URL |
[13] |
SHIMAMURA H, NAKAMURA T . Mechanical properties degradation of polyimide films irradiated by atomic oxygen. Polym. Degrad. Stabil., 2009,94(9):1389-1396.
DOI URL |
[14] | DE GROH K K, BANKS B A, MITCHELL G G , et al. NASA STI Pprogram. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data, NASA/TM—2013-217847,Ohio: NASA, 2013. |
[15] | BANKS B A, DILL G C, LOFTUS R J , et al. NASA STI Program. Comparison of Hyperthermal Ground Laboratory Atomic Oxygen Erosion Yields with Those in Low Earth Orbit, NASA/TM—2013-216613,Ohio: NASA, 2013. |
[16] | BANKS B A, MILLER S K . NASA STI Program. Effects of Sample Holder Rdge Geometry on Atomic Oxygen Erosion Yield of Pyrolytic Graphite Exposed in Low Earth Orbit, NASA/TM—2018-219910,Ohio: NASA, 2018. |
[17] | QING F L, CAO W Z . Mechanical Property Improvement of Novel AO Resistance PI Thin Films and the synthesis of Wide Width Films. China Space Science Society Space Materials Specialized Committee 2009 Academic Exchange Proceedings, 2009. |
[18] | JI H W . Synthesis and Atomic Oxygen Erosion Resistance Property of PPO-containing Polyimide Films. Changchun: Jilin University Master Thesis, 2014. |
[19] | WEI J H, GANG Z X, MING L Q , et al. Atomic oxygen resistant phosphorus-containing copolyimides derived from bis [4-(3-aminophenoxy) phenyl] phenylphosphine oxide. Sci. SerB., 2014,56(6):788-798. |
[20] |
XIAO F, WANG K, ZHAN M . Atomic oxygen erosion resistance of polyimide/ZrO2 hybrid films. Appl. Surf. Sci., 2010,256(24):7384-7388.
DOI URL |
[21] |
LÜ M, WANG Q, WANG T , et al. Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications. Compos. Pt. B-Eng., 2015,77:215-222.
DOI URL |
[22] |
LI G, WANG L, NI H , et al. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J. Inorg. Organomet. Polym., 2001,11(3):123-154.
DOI URL |
[23] | MINTON T K, WRIGHT M E, TOMCZAK S J , et al. Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl. Mater. Interfaces, 2012,4(2):492-502. |
[24] |
LEI X F, QIAO M T, TIAN L D , et al. Improved space survivability of polyhedral oligomeric silsesquioxane (POSS) polyimides fabricated via novel POSS-diamine. Corros. Sci., 2015,90:223-238.
DOI URL |
[25] |
LI X, AL-OSTAZ A, JARADAT M , et al. Substantially enhanced durability of polyhedral oligomeric silsequioxane-polyimide nanocomposites against atomic oxygen erosion. Eur. Polym. J., 2017,92:233-249.
DOI URL |
[26] | TOMCZAK S J, MARCHANT D, SVEIDA S , et al. Properties and improved space survivability of POSS (polyhedral oligomeric silsesquioxane) polyimides. MRS Online Proc. Libr., 2004,851. |
[27] |
BRUNSVOLD A L, MINTON T K, GOUZMAN I , et al. An investigation of the resistance of polyhedral oligomeric silsesquioxane polyimide to atomic-oxygen attack. High Perform. Polym., 2004,16(2):303-318.
DOI URL |
[28] |
VERKER R, GROSSMAN E, GOUZMAN I , et al. POSS-polyimide nanocomposite films: simulated hypervelocity space debris and atomic oxygen effects. High Perform. Polym., 2008,20(4/5):475-491.
DOI URL |
[29] |
VERKER R, GROSSMAN E, ELIAZ N . Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: the role of mechanical properties at elevated temperatures. Acta Mater., 2009,57(4):1112-1119.
DOI URL |
[30] |
FANG G, LI H, LIU J , et al. Intrinsically atomic-oxygen-resistant POSS-containing polyimide aerogels: synthesis and characterization. Chem. Lett., 2015,44(8):1083-1085.
DOI URL |
[31] |
LEI X, QIAO M, TIAN L , et al. Evolution of surface chemistry and morphology of hyperbranched polysiloxane polyimides in simulated atomic oxygen environment. Corros. Sci., 2015,98:560-572.
DOI URL |
[32] |
LIU Y Z, SUN Y, ZENG F L , et al. Characterization and analysis on atomic oxygen resistance of POSS/PVDF composites. Appl. Surf. Sci., 2014,320:908-913.
DOI URL |
[33] |
LEI X F, CHEN Y, ZHANG H P , et al. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl. Mater.Interfaces, 2013,5(20):10207-10220.
DOI URL |
[34] | DUO S W, SONG M M, LIU T Z , et al. SiO2 Coatings Prepared by Sol-Gel Process Protecting Silver from Atomic Oxygen Erosion. Applied Mechanics and Materials. Switzerland: Trans Tech Publications, 2012: 3044-3047. |
[35] |
HEIMANN R B, KLEIMAN J I, LITOCSKY E , et al. High-pressure cold gas dynamic (CGD)-sprayed alumina-reinforced aluminum coatings for potential application as space construction material. Surf. Coat. Technol., 2014,252:113-119.
DOI URL |
[36] |
GOUZMAN I, GIRSHEVITZ O, GROSSMAN E , et al. Thin film oxide barrier layers: protection of Kapton from space environment by liquid phase deposition of titanium oxide. ACS Appl. Mater.Interfaces, 2010,2(7):1835-1843.
DOI URL |
[37] |
QI H, QIAN Y, XU J , et al. Studies on atomic oxygen erosion resistance of deposited Mg-alloy coating on Kapton. Corros. Sci., 2017,124:56-62.
DOI URL |
[38] |
QI H, QIAN Y, XU J , et al. An AZ31 magnesium alloy coating for protecting polyimide from erosion-corrosion by atomic oxygen. Corros. Sci., 2018,138:170-177.
DOI URL |
[39] |
ERDOĞAN S, KÖYTEPE S, SECKIN T , et al. V2O5-polyimide hybrid material: synthesis, characterization, and sulfur removal properties in fuels. Clean Technol. Environ.Policy, 2014,16(3):619-628.
DOI URL |
[40] |
CHEN L, LIU L, DU Y , et al. Processing and characterization of ZnO nanowire-grown PBO fibers with simultaneously enhanced interfacial and atomic oxygen resistance properties. RSC Adv., 2014,4(104):59869-59876.
DOI URL |
[41] |
GOTLIB-VAINSTEIN K, GOUZMAN I, GIRSHEVITZ O , et al. Liquid phase deposition of a space-durable, antistatic SnO2 coating on Kapton. ACS Appl. Mater.Interfaces, 2015,7(6):3539-3546.
DOI URL |
[42] |
OUYANG Q, WANG W, FU Q , et al. Atomic oxygen irradiation resistance of transparent conductive oxide thin films. Thin Solid Films, 2017,623:31-39.
DOI URL |
[43] |
HUANG Y, LÜ S, TIAN X , et al. Interface analysis of inorganic films on polyimide with atomic oxygen exposure. Surf. Coat. Technol., 2013,216:121-126.
DOI URL |
[44] |
WANG W, LI C, ZHANG J , et al. Effects of atomic oxygen treatment on structures, morphologies and electrical properties of ZnO: Al films. Appl. Surf. Sci., 2010,256(14):4527-4532.
DOI URL |
[45] |
CHAVERZ R, IONESCU E, BALAN C , et al. Effect of ambient atmosphere on crosslinking of polysilazanes.[J]. Appl. Polym. Sci., 2011,119(2):794-802.
DOI URL |
[46] | LI S, ZHANG Y . Effect of synthesis temperature on structure and ceramization process of polyaluminasilazanes. Chinese Journal of Inorganic Chemistry, 2011,27(5):943-950. |
[47] | CHANG Y C, LIU T Z, ZHANG H , et al. Protection of Kapton from Atomic-oxygen Erosion Using a Polysilazane Coating. LIU H W, WANG G, ZHANG G W. Material Science, Civil Engineering and Architecture Science, Mechanical Engineering and Manufacturing Technology II. Switzerland: Trans. Tech. Publications, 2014,651:65-68. |
[48] |
DUO S, CHANG Y C, LIU T , et al. Atomic oxygen erosion resistance of polysiloxane/POSS hybrid coatings on Kapton. Phys.Procedia, 2013,50:337-342.
DOI URL |
[49] |
KLEIMAN J I . Surface modification technologies for durable space polymers. MRS Bull., 2010,35(1):55-65.
DOI URL |
[50] | ISKANDEROVA Z A, KLEIMAN J I, GUDIMENKO Y , et al. Surface Modification of Polymers and Carbon-based Materials by ion Implantation and Oxidative Conversion:U.S., 5,683,757.1997 -11-4. |
[51] | GUDIMENKO Y, KLEIMAN J I, COOL G R , et al. Modification of Subsurface Region of Polymers and Carbon-based Materials:U.S., 5,948,484. 1999 -9-7. |
[52] | GUDIMENKO Y, NG R, KLEIMAN J , et al. Photosil™ Surface Modification Treatment of Polymer-based Space Materials and External Space Components. KLEIMAN J, ISKANDEROVA Z A. Protection of Materials and Structures from Space Environment. U.S.: Kluwer Academic Publishers, 2004: 419-434. |
[53] | ISKANDEROVA Z A, KLEIMAN J I, GUDIMENKO Y , et al. Research Aspects of Scaling-up Implantox Technology for Protection of Polymers in Space by Ion Implantation. Protection of Space Materials from the Space Environment. Dordrecht: Springer, 2001: 145-163. |
[54] | GU H Y . Surface Activation and Silanization of Polyimide. Shanghai: Shanghai Institute of Ceramics PhD Thesis, 2015. |
[55] |
SHU M, LI Z, MAN Y , et al. Surface modification of poly (4, 4°-oxydiphenylene pyromellitimide)(Kapton) by alkali solution and its applications to atomic oxygen protective coating. Corros. Sci., 2016,112:418-425.
DOI URL |
[56] |
LIU K, MU H, SHU M , et al. Improved adhesion between SnO2/SiO2 coating and polyimide film and its applications to atomic oxygen protection. Colloids Surf.A, 2017,529:356-362.
DOI URL |
[57] | WANG D, GAO Z M, LI Z H , et al. Analysis of erosion effect of environmental factors on polyimide films and coatings. Surface Technology, 2018,47(1):123-128. |
[58] |
ISKANDEROVA Z A, KLEIMAN J I, GUDIMENKO Y , et al. Influence of content and structure of hydrocarbon polymers on erosion by atomic oxygen. J. Spacer.Rockets, 1995,32(5):878-884.
DOI URL |
[59] |
XIE Y, GAO Y, QIN X , et al. Preparation and properties of atomic oxygen protective films deposited on Kapton by solvothermal and Sol-Gel methods. Surf. Coat. Technol., 2012,206(21):4384-4388.
DOI URL |
[60] | BANKS B A, DE GROH K K, AUER B M , et al. LDEF. Monte Carlo Modeling of Atomic Oxygen Attack of Polymers with Protective Coatings on LDEF. N93-28282,Ohio: NASA , 1993: 1137-1150. |
[61] | WEAVER A B, KULAKHMETOY M, ALEXEENKO A A . Consistent atomic oxygen model for firect dimulation monte carlo below 1000 kelvin. J. Thermophys.Heat Transfer, 2016: 689-694. |
[62] |
LIU Y, LI G . Numerical simulation on atomic oxygen undercutting of Kapton film in low earth orbit. Acta Astronaut., 2010,67(3/4):388-395.
DOI URL |
[63] |
HUANG Y, TIAN X, LÜ S , et al. An undercutting model of atomic oxygen for multilayer silica/alumina films fabricated by plasma immersion implantation and deposition on polyimide. Appl. Surf. Sci., 2011,257(21):9158-9163.
DOI URL |
[64] | BANKS B A, DE GROH K K, KNEUBEL C A . NASA STI Program. Comparison of the Results of MISSE 6 Atomic Oxygen Erosion Yields of Layered Kapton H Films with Monte Carlo Computational Predictions, NASA/TM—2014-218411,Ohio: NASA, 2014. |
[65] | DUO S W, LI M S, ZHANG Y M . Erosion theoretical and predictive models of atomic oxygen for space materials in low earth orbit. |
Chinese Journal of Materials Reaserch, 2003,17(2):113-121. | |
[66] |
LEE C H, CHEN L W . Reactive probability of atomic oxygen with material surfaces in low earth orbit. J. Spacecr.Rockets, 2000,37(2):252-256.
DOI URL |
[67] |
LIU T, SUN Q, MENG J , et al. Degradation modeling of satellite thermal control coatings in a low earth orbit environment. Sol.Energy, 2016,139:467-474.
DOI URL |
[68] |
CHEN L, LI Z, LEE C H , et al. Unified model for low-earth- orbital atomic-oxygen and atomic-oxygen/ultraviolet induced erosion of polymeric materials. Aerosp. Sci. Technol., 2016,53:194-206.
DOI URL |
[69] |
VAN DUIN A C T, DASGUPTA S, LORANT F , et al. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A, 2001,105(41):9396-9409.
DOI URL |
[70] |
RAHNAMOUN A, VAN DUIN A C T . Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the reaxff reactive force-field method. J. Phys. Chem. A, 2014,118(15):2780-2787.
DOI URL |
[71] |
RAHMANI F, NOURANIAN S, LI X , et al. Reactive molecular simulation of the damage mitigation efficacy of POSS-, graphene-, and carbon nanotube-loaded polyimide coatings exposed to atomic oxygen bombardment. ACS Appl. Mater. Interfaces, 2017,9(14):12802-12811.
DOI URL |
[72] |
ZENG F, PENG C, LIU Y , et al. Reactive molecular dynamics simulations on the disintegration of PVDF, FP-POSS, and their composite during atomic oxygen impact. J. Phys. Chem. A, 2015,119(30):8359-8368.
DOI URL |
[73] | GINDULYTE A, MASSA L, BANKS B A , et al. Degradation of Polymers by O (3 P) in Low Earth Orbit. Protection of Materials and Structures from Space Environment. Dordrecht: Springer, 2004: 299-306. |
[74] |
ZHANG H, REN S, PU J , et al. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation. Appl. Surf. Sci., 2018,444:28-35.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[7] | ZHANG Yuyu, WU Yicheng, SUN Jia, FU Qiangang. Preparation and Wave-absorbing Properties of Polymer-derived SiHfCN Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 681-690. |
[8] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[9] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[10] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[11] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[12] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[13] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[14] | CAI Heqing, HAN Lu, YANG Songsong, XUE Xinyu, ZHANG Kou, SUN Zhicheng, LIU Ruping, HU Kun, WEI Yan. Fe3O4-DMSA-PEI Magnetic Nanoparticles with Small Particle Size: Preparation and Gene Loading [J]. Journal of Inorganic Materials, 2024, 39(5): 517-524. |
[15] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||