Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (10): 1021-1029.DOI: 10.15541/jim20190043
• Review • Next Articles
Received:
2019-01-24
Revised:
2019-05-07
Published:
2019-09-23
Online:
2019-05-29
CLC Number:
GUO Rong-Nan, HAN Wei-Qiang. Effects of Structure and Properties of Polar Polymeric Binders on Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2019, 34(10): 1021-1029.
Binder | Application | Adhesion | Specific capacity/(mAh?g-1) | Ref. |
---|---|---|---|---|
Linear polymer | ||||
PAL-NaPAA | Si | 5.0 N/cm | 1914 (100 cycles, 0.84 A/g) | [17] |
Carboxymethyl fenugreek gum | Si | — | 1790 (200 cycles, 1 A/g) | [18] |
CCS | S | ~4 N | ~600 (400 cycles, 0.5C) | [19] |
PF-COONa | Sn Si | — 6.6 N | 518 (500 cycles, 0.2 A/g) 2806 (100 cycles, 0.42 mA/g, 0.19 mg/cm2) | [20-21] |
Cross-linked polymer | ||||
c-PEO-PEDOT:PSS/PEI | Si | ~0.55 N/mm2 | 2027 (500 cycles, 1.0 A/g) | [22] |
c-PAM-0.001 | Si | 13.98 N | 2834 (100 cycles, 0.1C) | [23] |
PEI-ER | S | — | 1025 (500 cycles, 0.5C) | [24] |
Cross-linked corn starch | Si | 31.2 gf/cm | 2106 (200 cycles, 0.5C) | [25] |
SHP-PEG | Si | ~3.2 N/cm | ~1300 (150 cycles, 0.5C) | [26] |
Table 1 Applications of polar polymeric binders in LIBs
Binder | Application | Adhesion | Specific capacity/(mAh?g-1) | Ref. |
---|---|---|---|---|
Linear polymer | ||||
PAL-NaPAA | Si | 5.0 N/cm | 1914 (100 cycles, 0.84 A/g) | [17] |
Carboxymethyl fenugreek gum | Si | — | 1790 (200 cycles, 1 A/g) | [18] |
CCS | S | ~4 N | ~600 (400 cycles, 0.5C) | [19] |
PF-COONa | Sn Si | — 6.6 N | 518 (500 cycles, 0.2 A/g) 2806 (100 cycles, 0.42 mA/g, 0.19 mg/cm2) | [20-21] |
Cross-linked polymer | ||||
c-PEO-PEDOT:PSS/PEI | Si | ~0.55 N/mm2 | 2027 (500 cycles, 1.0 A/g) | [22] |
c-PAM-0.001 | Si | 13.98 N | 2834 (100 cycles, 0.1C) | [23] |
PEI-ER | S | — | 1025 (500 cycles, 0.5C) | [24] |
Cross-linked corn starch | Si | 31.2 gf/cm | 2106 (200 cycles, 0.5C) | [25] |
SHP-PEG | Si | ~3.2 N/cm | ~1300 (150 cycles, 0.5C) | [26] |
Fig. 6 (a) Scheme for the cross-linked binder of PNA-NaPAA-g-CMC, (b) tensile tests of different binders impregnated with electrolyte and (c) cycling performances of Si electrodes with different binders[47]
[1] | HE W, TIAN H, ZHANG S , et al. Scalable synjournal of Si/C anode enhanced by FeSix nanoparticles from low-cost ferrosilicon for lithium-ion batteries.[J]. Power Sources, 2017,353:270-276. |
[2] | CHEN Y, LIU L, XIONG J , et al. Porous Si nanowires from heap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater., 2015,25(43):6701-6709. |
[3] | PARK M H, KIM M G, JOO J , et al. Silicon nanotube battery anodes. Nano Lett., 2009,9(11):3844-3847. |
[4] | LIU Y, TAI Z, ZHOU T , et al. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk- structured silicon and binder for lithium-ion batteries. Adv. Mater., 2017, 29(44): 1703028-1-11. |
[5] | AKHTAR N, SHAO H, AI F , et al. Gelatin-polyethylenimine composite as a functional binder for highly stable lithium-sulfur batteries. Electrochim. Acta, 2018,282:758-766. |
[6] | HE J, ZHANG L . Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. J. Alloy. Compound, 2018,763:228-240. |
[7] | LING M, ZHANG L, ZHENG T , et al. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy, 2017,38:82-90. |
[8] | CHOI S, KWON T W, COSKUN A , et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 2017,357(6348):279-283. |
[9] | ZHAO X Y, YIM C H, DU N Y , et al. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries.[J]. Electrochem. Soc., 2018,165(5):A1110-A1121. |
[10] | HU S, CAI Z, HUANG T , et al. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019,11(4):4311-4317. |
[11] | DROFENIK J, GABERSCEK M, DOMINKO R , et al. Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochim. Acta, 2003,48(7):883-889. |
[12] | ZHANG R, YANG X, ZHANG D , et al. Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries.[J]. Power Sources, 2015,285:227-234. |
[13] | MIN K, RAMMOHAN A R, LEE S H , et al. Grafting functional groups in polymeric binder toward enhancing structural integrity of LixSiO2 anode during electrochemical cycling. J. Phys. Chem. C, 2018,122(30):17190-17198. |
[14] | YOO J K, JEON J, KANG K , et al. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries. Electron. Mater. Lett., 2017,13(2):136-141. |
[15] | JIAO Y, CHEN W, LEI T , et al. A Novel polar copolymer design as a multi-functional binder for strong affinity of polysulfides in lithium-sulfur batteries.Nanoscale Res. Lett., 2017, 12: 195-1-8. |
[16] | HOCHGATTERER N S, SCHWEIGER M R, KOLLER S , et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem. Solid State Lett., 2008,11(5):A76-A80. |
[17] | LUO C, DU L, WU W , et al. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain. Chem. Eng., 2018,6(10):12621-12629. |
[18] | QIU L W, SHEN Y D, FAN H B , et al. Carboxymethyl fenugreek gum: rheological characterization and as a novel binder for silicon anode of lithium-ion batteries. Int.[J]. Biol. Macromol., 2018,115:672-679. |
[19] | YI H, LAN T, YANG Y , et al. Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium-sulfur batteries. J. Mater. Chem. A, 2018,6(38):18660-18668. |
[20] | ZHAO Y, YANG L Y, LIU D , et al. A conductive binder for high-performance Sn electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2018,10(2):1672-1677. |
[21] | LIU D, ZHAO Y, TAN R , et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy, 2017,36:206-212. |
[22] | ZENG W, WANG L, PENG X , et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater., 2018, 8(11): 1702314-1-8. |
[23] | ZHU X, ZHANG F, ZHANG L , et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv. Funct. Mater., 2018, 28(11): 1705015-1-12. |
[24] | YAN L, GAO X, WAHID-PEDRO F , et al. A novel epoxy resin-based cathode binder for low cost, long cycling life, and high-energy lithium-sulfur batteries. J. Mater. Chem. A, 2018,6(29):14315-14323. |
[25] | ROHAN R, KUO T C, CHIOU C Y , et al. Low-cost and sustainable corn starch as a high-performance aqueous binder in silicon anodes via in situ cross-linking.[J]. Power Sources, 2018,396:459-466. |
[26] | MUNAOKA T, YAN X Z, LOPEZ J , et al.Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater., 2018, 8(14): 1703138-1-11. |
[27] | LUO L, XU Y, ZHANG H , et al. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-si anodes. ACS Applied Materials & Interfaces, 2016,8(12):8154-8161. |
[28] | PARK H K, KONG B S, OH E S . Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem. Commun., 2011,13(10):1051-1053. |
[29] | RYOU M H, KIM J, LEE I , et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater., 2013,25(11):1571-1576. |
[30] | WEI L, CHEN C, HOU Z, et al. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries.Sci. Rep., 2016, 6: 19583-1-8. |
[31] | BUQA H, HOLZAPFEL M, KRUMEICH F , et al. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries.[J]. Power Sources, 2006,161(1):617-622. |
[32] | MAGASINSKI A, ZDYRKO B, KOVALENKO I , et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces, 2010,2(11):3004-3010. |
[33] |
KOVALENKO I, ZDYRKO B, MAGASINSKI A , et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011,334(6052):75-79.
DOI |
[34] | HAN Z J, YABUUCHI N, HASHIMOTO S , et al. Cross-linked poly(acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries. ECS Electrochem. Lett., 2013,2(2):A17-A20. |
[35] | WANG L, LIU T, PENG X , et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater., 2017, 28(3): 1704858-1-8. |
[36] | YANG J, ZHANG L, ZHANG T , et al. Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries. Electrochemistry Communications, 2018,87:22-26. |
[37] | ZHANG G, YANG Y, CHEN Y , et al. A wuadruple-hydrogen- bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries. Small, 2018, 14(29): 1801189-1-10. |
[38] | XU Z, YANG J, ZHANG T , et al. Silicon microparticle anodes with self-healing multiple network binder. Joule, 2018,2(5):818-819. |
[39] | KWON T W, JEONG Y K, DENIZ E , et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano, 2015,9(11):11317-11324. |
[40] | BRIDEL J S, AZAIS T, MORCRETTE M , et al. In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries.[J]. Electrochem. Soc., 2011,158(6):A750-A759. |
[41] | WEI Y J, WANG Z J, YE H , et al. A stable cross-linked binder network for SnO2 anode with enhanced sodium-ion storage performance. ChemistrySelect, 2017,2(35):11365-11369. |
[42] | ZHANG L, ZHANG L, CHAI L , et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A, 2014,2(44):19036-19045. |
[43] | MAZOUZI D, LESTRIEZ B, ROUE L , et al. Silicon composite electrode with high capacity and long cycle life . Electrochemical and Solid-State Letters, 2009,12(11):A215-A218. |
[44] | BAUNACH M, JAISER S, SCHMELZLE S , et al. Delamination behavior of lithium-ion battery anodes: influence of drying temperature during electrode processing. Dry. Techn., 2016,34(4):462-473. |
[45] | KARKAR Z, MAZOUZI D, HERNANDEZ C R , et al. Threshold-like dependence of silicon-based electrode performance on active mass loading and nature of carbon conductive additive. Electrochim. Acta, 2016,215:276-288. |
[46] | HE W, TIAN H, XIN F , et al. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries. J. Mater. Chem. A, 2015,3(35):17956-17962. |
[47] | WEI L M, HOU Z Y . High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries. J. Mater. Chem. A, 2017,5(42):22156-22162. |
[48] | NUNES R W, MARTIN J R, JOHNSON J F . Influence of molecular- weight and molecular-weight distribution on mechanical-properties. Polym. Eng. Sci., 1982,22(4):205-228. |
[49] | WU Q, HENRIKSSON M, LIU X , et al. A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules, 2007,8(12):3687-3692. |
[50] | WANG Y, GOZEN A, CHEN L , et al. Gum-like nanocomposites as conformable, conductive,adhesive electrode matrix for energy storage devices. Adv. Energy Mater., 2017, 7(6): 1601767-1-11. |
[51] | YUCA N, CETINTASOGLU M E, DOGDU M F , et al. Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries. Int. J. Energy Res., 2018,42(3):1148-1157. |
[52] | HUANG S, REN J G, LIU R , et al. Low addition amount of self-healing ionomer binder for Si/graphite electrodes with enhanced cycling . New J. Chem, 2018,42(9):6742-6749. |
[53] | WANG Z Q, TIAN S K, LI S D , et al. Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries. RSC Adv., 2018,8(36):20025-20031. |
[54] | MILROY C, MANTHIRAM A . An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium-sulfur batteries. Adv. Mater., 2016,28(44):9744-9751. |
[55] | TAMURA T, AOKI Y, OHSAWA T , et al. Polyaniline as a functional binder for LiFePO4 cathodes in lithium batteries. Chem. Lett., 2011,40(8):828-830. |
[56] | SHI Y, ZHANG J, BRUCK A M , et al. A tunable 3D nanostructured conductive gel framework electrode for high- performance lithium ion batteries. Adv. Mater., 2017, 29(22): 1603922-1-8. |
[57] | PIECZONKA N P W, BORGEL V, ZIV B , et al. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries. Adv. Energy Mater., 2015, 5(23): 1501008-1-10. |
[58] | LIU J, ZHANG Q, ZHANG T , et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater., 2015,25(23):3599-3605. |
[59] | GENDENSUREN B, OH E S . Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery.[J]. Power Sources, 2018,384:379-386. |
[60] | PAN J, XU G, DING B , et al. PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium-sulfur batteries. RSC Adv., 2016,6(47):40650-40655. |
[61] | LING M, ZHAO H, XIAO X , et al. Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries. J. Mater. Chem. A, 2015,3(5):2036-2042. |
[62] | GUO R, ZHANG S, YING H , et al. A new, effective and low cost dual-functional binder for porous silicon anodes in lithium-ion batteries.ACS Appl. Mater. Interfaces, 2019,11(15):14051-14058. |
[63] | CHEN Z, CHRISTENSEN L, DAHN J R . Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries..J. Electrochem. Soc, 2003,150(8):A1073-A1078. |
[64] | LAIDLER K J . The development of the Arrhenius equation.[J]. Chem. Educ., 1984,61(6):494-498. |
[65] | KARKAR Z, GUYOMARD D, ROUE L , et al. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes.Electrochim. Acta, 2017,258:453-466. |
[66] | LEE S H, LEE J H, NAM D H , et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery.ACS Appl. Mater. Interfaces, 2018,10(19):16449-16457. |
[67] | GAO H, ZHOU W, JANG J H , et al. Cross-linked chitosan as a polymer network binder for an antimony anode in sodium-ion batteries. Adv. Energy Mater., 2016, 6(6): 1502130-1-7. |
[68] | WANG H, LING M, BAI Y , et al. Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. J. Mater. Chem.A, 2018,6(16):6959-6966. |
[69] | LIAO J, LIU Z, LIU X , et al. Water-soluble linear poly (ethylenimine) as a superior bifunctional binder for lithium-sulfur batteries of improved cell performance. J. Phys. Chem. C, 2018,122(45):25917-25929. |
[70] | SONG J, ZHOU M, YI R , et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater., 2014,24(37):5904-5910. |
[71] | FEI J, SUN Q Q, CUI Y L , et al. Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4·0.8H2O anode in lithium ion batteries.. J. Electroanal. Chem, 2017,804:158-164. |
[72] | LEE S Y, CHOI Y, HONG K S , et al.Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode. Appl. Surf. Sci., 2018,447:442-451. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||